

555/I, 13th Cross, Beside BSNL RTTC, 3rd Stage, T.K Layout, Saraswathipuram (P) Mysore - 570 009. Tele Fax: 0821-2543334, 9480306639 MAIL-rachanaenercare@gmail.com web-www.rachanaenercare.com

Ref no: RECM/EA/ 3811/1 /21-22

Date 31.03.2021

ENERGY, ENVIRONMENT & GREEN AUDIT CERTIFICATE

This is to certify that, Yuvaraja's College (Autonomous) situated at JLB Road, Mysore -570005 (Karnataka) has been audited for energy, environment & green conservation systems & practices adopted till March 2021 and the further 2021-22 auditing is in progress.

Energy, environment & green audit covered the entire campus, consisting of Yuvaraja college buildings, Platinum jubilee building and other facilities, on energy conservation, renewable energy, waste management & greenery maintenance.

Audit report has been prepared based on study, site visit & data collected measurements and verification done during the course of audit. Energy audit is related to connection having RR No HT444(0641504157), Contract Demand 250KVA

Audit has been conducted by our team of qualified and certified engineers in accordance with standards & guidelines set by, BEE- Bureau of energy efficiency, ECBC – Energy Conservation Building Code, PCB-Pollution control board guidelines, ASHRAE and other standards.

Audit also considered guidelines of NAAC National Accreditation Council under institutional values related to energy, environment & green.

fuit cere.

-ANIL KUMAR NADIGER, B.E.(E&E), M.I.E Director & Energy Specialist RACHANA ENER CARE <Engineers for Energy & Environment>

Consultancy, Projects & Innovations >Energy Conservation, audits –Govt. Certified Energy Managers & auditors >Resources (Solar, Wind, Bio gas) >Power conditioning, quality & safety

> R.O - No.128, 3rd Cross Ideal Home, Rajarajeshwari Nagar, Il Stage, Bangalore - 560098. Tele Fax: 080- 28606850, 9449805217

Energy, Environment & Green audit report Of

UNIVERSITY OF MYSORE **YUVARAJA'S COLLEGE (Autonomous)** (A CONSTITUENT AUTONOMOUS COLLEGE OF THE UNIVERSITY OF MYSORE) Re-Accredited A Grade by NAAC with CGPA of 3.34 & College with Potential for Excellence MYSORE - 570 005.

Prepared by:

Feb 2022 (inclusive of 2019-21)

RACHANA ENER CARE

Engineers for Energy& Environment (Team of BEE-Dept of energy Certified energy managers & auditors) No555/I,13th cross,TK lay out ,Beside BSNL RTTC Saraswati puram (p)Mysuru- 570009 - Ph-9449837309 www.rachanaenercare.com, Mail; rachanaenercare@gmail.com

I. Work order details

Title	Energy ,Environment & Green audit
Scope	Evaluation of present condition & scope for improvement
WO number & date	UOM/YCM/WO/852/2021-22 Dt 09.11.2021 (Due to Covid 19, work order was given during 2021-22, the report is inclusive of 2019-20, 2020-21 also)
Study & Report submission	Feb 2022
Conducted by	Rachana Ener Care (Engineers for energy & environment) Team of BEE (Govt of India) certified energy managers & auditors –Mysore Environment consultants NIE CREST- Centre for Renewable energy & sustainable technologies - Mysore
Contact person	ANIL KUMAR NADIGER (Director & Energy Specialist)
Ph NO	9449837309
E mail ID	rachanaenercare@gmail.com
web	rachanaenercare.com

II Acknowledgement

We appreciate the initiation taken by YUVARAJA'S COLLEGE (AUTONOMOUS), UNIVERSITY OF MYSURU, JLB Road, Mysuru for their interest to have an energy environment & green audit. This will not only benefit institutions but society at large.

We are thankful to the institution for giving this opportunity to us. This is a great opportunity for us to serve in our passionate area of energy & environment.

We are thankful to the Principal & all staff for this initiation and giving consent to conduct an audit.

We are thankful to the office staff providing us data. Thanks to all office staff & other members who have supported us in the audit process.

Head of NIE CREST (National Institute of Engineering) Mr. Sham sunder has provided vital information and constancy in waste management & green technologies. Thanks to NIE CREST & team

We need to mention our gratitude to the entire workforce of the institution, who have co operated and shared information during our frequent visit to campus.

Sustainability in Energy & Environment is everyone's need & its conservation is everyone's responsibility. But practicing is a challenge. We are sure that institution will go ahead in this regard.

Thank you.

For RACHANA ENER CARE ANIL KUMAR NADIGER B.E. (E & E) M.I.E (DIRECTOR & ENERGY SPECIALIST)

iii INDEX

		Page
No	chapter	No.
	Front cover	1
Ι	Work order details	2
II	Acknowledgment	3
	Index	4
1	Abbreviations & glossary	6
2	References, Guide Books & Standards	8
3	Executive summary	9
4	Introduction	16
4.1	Introduction about Yuvaraja college, Rachana enercare, NIE crest	16
4.2	Energy, environment & green: Need for conservation & audit	17
4.3	Scope of Energy ,environment & green audit	18
5	Energy audit	20
5.1	Introduction to energy audit	20
5.2	Flow chart	22
6	Source side data collection & analysis	23
6.1	Sources of energy	23
6.2	Power connection details	24
6.3	Transformer details	25
6.4	Energy consumption pattern of three years (Year & monthly basis)	26
6.5	Power factor (on transformer supply side)	28
6.6	Maximum demand (variation on supply side)	29
6.7	Category of Connected load & its impact on source	31
7	Power quality	33
7.1	introduction to power quality	33
7.2	Voltage variation	34
7.3	Load variation	36
7.4	Energy consumption on different days	41
7.5	TOD Energy (Time of the day)	42
7.6	Power Factor (PF) variation	45
8	Demand side management (DSM)	47
8.1	Introduction	47
8.2	Details of Connected Load type, power & statistics in the institution	48
8.3	Load distribution (sections wise)	49
8.4	Lighting	54
8.5	Fans	56
8.6	UPS	59
8.7	Computer & accessories	63
8.8	Pumps	64
8.9	Air conditioners	67
8.1		
0	Refrigerators	70
8.1		
1	Automation	73

8.12	Lux level	74
8.13	Water TDS (hardness)	77
8.14	Natural day light & ventilation	77
8.15	Electrical panel board	78
9	Renewable energy	79
9.1	Introduction renewable energy	79
9.2	Present usage & recommendations	80
9.3	Present condition of solar Street lights	83
10	Energy bench mark	84
10.1	EPI –Energy Performance Index	84
10.2	Per capital energy consumption	84
11	Environment audit	85
11.1	Introduction	85
11.2	Type of waste generation	86
11.3	Sewage water	86
11.3.		
1	Rain water harvesting	88
11.3.		
2	Bore well recharge pit	89
11.3.		
3	Water Flow control at taps	89
11.3.		
4	other water conservation measures	89
11.4	Dry waste (paper waste)	91
11.5	Dry waste (leaf waste)	91
11.6	Dry waste (plastic waste)	91
11.7	Wet waste (food waste)	93
11.8	Biological Hazardous waste (sanitary pads)	93
11.9	Chemical waste	93
11.10	E waste (electrical & electronic equipments)	94
11.11	Hazardous waste (Mercury waste)	94
11.12	Hazardous waste (lead waste)	95
11.13	Air pollution	95
11.14	Noise pollution	95
11.15	Promoting Electrical vehicles by charging points	96
12	Green Audit	97
12.1	Introduction	97
12.2	Green coverage inventory	97
12.3	Type of flora	99
12.4	Types of fauna (Bio diversity)	115
12.5	Water bodies	118
13	Awareness Activities	119
14	Annexure	121
14.1	E-waste PCB norms	
14.2	Electricity bill sample	
14.3	Water bill sample	
14.4	Audit Meetings	

14.5	Old battery buy back bill	
14.6	Photos	

1. Abbreviations and Glossary

- AC Alternating Current
- AH Ampere Hour (Used to define capacity of battery)
- BD Billing Demand
- BEE Bureau of energy efficiency (A statutory body under Dept of energy India)
- BLDC Brush Less DC fans (Most advance technology fans)
- CD- Contract Demand (Power demanded by consumer to ESCOMs)
- CFM Cubic Feet per Minute (measure of flow)
- CHESCOM Chamundeswari electricity Company
- CT Current transformer (small device used in electrical panel)
- DC Direct Current
- DG Diesel Generator
- DG Diesel Generator
- **DISCOMS** Distribution Company (electricity)
- ECBC Energy conservation building code
- EER Energy Efficiency Ratio
- Efficacy capacity to deliver desired out put
- ESCOM Electricity Company (CHESCOM, BESCOM, MESCOM, GESCOM, HESCOM)
- **EV- Electric Vehicle**
- HP Horse power (1hp = 0.745 kw)
- HT High Tension (High voltage 11,000 Volts)
- KWH Kilo watt hour generally used as 'Units'
- LED Light Emitting Diode
- LPH Litre per hour (related to flow)
- Lumens- Unit to measure total output light
- LUX Illumination level in unit area
- Mains- Electricity supply point
- MCC- Mysuru City Corporation
- MD- Maximum Demand
- NGT National Green Tribunal
- PCB Pollution control board
- PCB Pollution Control Board
- PF Power factor

PPM – Parts per million (Units of measure)

Refrigerant- Chemical used in refrigerator

RO – Reverse Osmosis

RWH - Rain water Harvesting.

SHCG – Solar Heat Gain Coefficient

- SMF Sealed Maintenance Free
- Star label Indication of energy efficiency of any equipment
- TDS Total dissolved salts
- UPS Uninterrupted Power Supply
- VA Volts and amps multiple
- W Watts Units to measure power

2.REFERENCES, GUIDE BOOKS & STANDARDS

Guidelines and standards set by following professional bodies, societies and government bodies were used in report. We acknowledge them.

- BEE Bureau of energy efficiency
- Nodal agency under department of energy, government of India
- NPC National productivity council
- Star label standards beestarlabel.com
- ECBC Energy Conservation Building Code
- ISHRAE- Indian Society of Hating Refrigerating & air conditioning Engineers
- ASHRAE- American Society of Hating Refrigerating & air conditioning Engineers
- PCB Pollution Control Board
- SEEM Society of Energy Engineers & Managers
- UNSDG- United Nation Sustainable Development Goals https://sdgs.un.org/goals
- KREDL-Karnataka State Renewable Energy Development Ltd
- SDA State designated agency under BEE

3.Executive summary

The purpose of energy , environment & green audit is to evaluate present condition and recommend for possible improvement.

Energy audit will focus on energy consumption trend, Types of load, power quality , opportunity to save energy and use of renewable energy. Cost implication , return on investment and environmental benefit also considered, while suggesting any energy conservation measures

Environmental audit will focus on quantum of waste generation , present way of managing waste adopted, possibility to reduce waste and better management option

Green audit will focus on green coverage, type of flora & fauna , etc

Energy Utilisation Pattern

Power details:

RR No	HT444(0641504157)
Туре	INDUSTRIAL- HT2a
Tariff	3HT2A-N
Contract Demand	250KVA
Billing Demand	213KVA
Demand charges	Rs.220/- per KVA +TAX
Energy Charges	Rs 7.20 BASIC + 0.05 FAC + TAX
ТАХ	6%

Observations:

- 1) There is common HT supply to Platinum jubilee building, Maharaja College and Yuvaraja college buildings. There is no sub meter to record each building consumption.
- 2) Energy consumption has been analysed from Apr 2019 to Dec 2021. Due to lock down there is decrease in power demand & energy usage in 2020-21 and may & june months of 2021.
- 3) Normal working academic year 2019-2020 is considered as base line for energy consumption.
- 4) Institution complex has consumed 3,00,600 units in 2019-2020. That is 25055 units per month and 822 units per day.
- 5) Monthly average from 2019 to 2021 has shown decreasing trend.

Year	19-20	20-21	21-22 (till Nov 21)
Monthly average	25055	18519.5	17838.75

Graph: Units consumed v/s monthly average per year

6) To analyse present energy usage trend , we have compared sept-nov 2019 with 20-21 and 21-22 .

Month	19-20	20-21	21-22
Sept	29162	16832	19042
Oct	24805	17682	17255
Nov	22710	18175	21127
total energy			
(three months)	76677	52689	57424

- 7) There is decrease trend in energy consumption, even after classes returned to normal.
- Institution has contract demand of 250 kva and billing demand of 213 kva. After analysing about 36 months bill, we found maximum demand has not crossed 150kva.

- 9) Institution has maintained overall power factor of 0.99 to unity using powr factor corrector system ,which is appreciable.
- 10) Connected load in the institution is about 200kw
- 11) Power demand of institution is 25kva to 35 kva and will not cross 50kva
- 12) Energy consumption per month is estimated as.7000 to 8000 units
- 13) There is no solar photovoltaic system. It is recommended to install solar photo voltaic system ,preferably on grid system . On grid system will supply energy for own use and excess energy during holidays can be exported to grid. Recommended solar roof top capacity to make campus as 'net zero energy' or carbon neutral is discussed in preceding chapter.
- 14) Presently 10kwp solar off grid system for computer lab usage is in process

- 15) Presently there is no diesel generator. Power cut duration is about 3 to 5%. Institution is depending on UPS system for emergency back up. This has reduced air pollution by generator exhaust.
- 16) There is very limited use of air conditioners. Its usage i limited to lab purpose, that too not regularly, but as and when required. It is appreciable that there is no use of air conditioner for human comfort purpose and campus is well ventilated.

sl	Proposal	Investment	Energy saved	Payback	Carbon
		(rs)	per annum	period	dioxide saved
			(units)	(years)	per annum
1	Replacing all Regular 1242	4,34,700/-	37260	1.56 years	44712kgs
	regular Tube lights to LED				
2	Replacing 17 very old &	9,82,500/-	29475	4.44 years	35370
	376 old fans totally 393				
	fans to recent technology				
	BLDC fans				
3	Switch off inverter section	nil	7008	-na-	8410
	of Online UPS, when not in				
	use				
4	Use of SMPS charger for on	60,000/-	3504	2.2 years	31526
	line UPS				
5	Solar off grid system in lieu	2,00,000/-	4500	4.9 years	5400
	of regular UPS				
	(additional cost for 5kva)				

Energy Conservation Measures Table

Note:

- Above is indicative only. Actual investment and payback period may vary time to time.
- Professional advice is required before any change in the system or implementing new system

Environmental audit observations

- Institution is sourcing it water needs mainly from corporation. An average 286000 ltrs per month of water is consumed from corporation. This is mainly used for basic needs of more than 4000 students and staff. Water required for garden purpose is sourced from Kukkarahalli lake. Institution also has bore well for its emergency need.
- 2) Water conservation measures: Institution new building has well designed RWH Rain water harvesting system of 1.5 lakh litre capacity. RO purifier system is used for lawn purpose. We recommend regular maintenance of RWH for proper utilisation.
- 3) Other conservation measures such as bore well recharge, flow control valves for taps, automatic controls can be adopted for further water conservation.
- 4) Water used for human basic needs is drained to corporation UGD system. Entire college campus can have a common Sewage treatment plant (STP) as long term water conservation measure.
- 5) Dry waste : Waste papers , dry leaves , small amount of plastic wastes are generated in the campus. All individual departments have dust bins. Dust bins are also placed in common places and park area. These are collectively dumped in a common place. This will be picked up by corporation. We recommend to keep a large collector bins , instead of dumping in open place. It is also recommended for more awareness boards , particularly in park & common areas. We also recommend to install composter to convert dry leaves to manure. This is useful for your garden purpose.
- 6) Wet waste: Quantum of wet waste generation is very less. Canteen is disposing it as cattle feed. Majority of students carry back their left over food back to home. However it is good practice to have wet waste collector bins.
- 7) Hazardous waste : Used tubes which contain mercury , computer parts which is main e waste , Batteries having lead waste constitute major hazardous waste. Old batteries are disposed by way of 'Buy back' system. This is approved way of disposal by pollution control board. Used tube lights are given to corporation. All other E waste is given to scrap dealer. As per E waste management act such tubes has to be disposed after properly packing and labelling. Guide lines copy is given in annexure.
- 8) Other hazardous waste: Institution has more girls students. Hence considerable amount of sanitary pad waste will be generated. Institution has incinerator in all rest rooms. Other hazardous waste is the chemical waste from labs. Quantum generation is less. These are buried in barren land

9) Noise & air pollution: Due to restricted movement of vehicles and parking places sound and noise pollution is less. In addition ,there is no generator system. Students are advised not to unnecessarily use vehicle horns in the campus. We have advised to provide E vehicle charging facility to two wheelers as initiative to encourage E vehicles.

Green audit observations

- 1) Institution has best utilised the space available to keep campus green , There are large trees, plants, ornamental plants in park and also in corridor of new building.
- 2) Trees and plants are labelled with both common and scientific name. This initiates will enhance interest among students and also in visitors
- 3) About 30 % of area is covered by green with large trees, small plants , ornamental plants and lawn.
- 4) More than 150 different types of vegetation are available the campus
- 5) More than 50 different resident & migratory birds can be seen in the campus.
- 6) There is neither natural or artificial water bodies in the campus.

Awareness activities

- Institution has conducted about 20 program to create awareness among students. This programs were done both inside and outside the campus, both independently and along with other organisations. About 1500 students and staff were participated in these programs.
- Institution has also fixed boards to create awareness on plastic free zon and protecting nature. We feel that there is need to add more posters and boards in th campus.

Consolidation

Best practices & systems adopted;

- 1) Maximum demand has not crossed contract demand any time (CD 250kva ,MD less than 150kva)
- 2) Power factor correction is good ranging from 0.99 to unity.
- 3) Air conditioner usage is limited
- 4) New auditorium and other installations have adopted LED lighting
- 5) Campus is largely depending on UPS and not any DG source at present
- 6) New building has good natural illumination (day light)
- 7) Water requirement is mainly sourced from corporation , which has less hardness and hence no salt deposition on any taps
- 8) New building has well designed RWH unit
- 9) RO drain water is used for lawn
- 10) Water is sourced from Kukkrhalli lake for gardening purpose
- 11) Campus is maintained green & clean in most of places
- 12) Garden has more than 150 verity of plants & more than 50 types of birds
- 13) Plant are labelled to educate and develop interest.
- 14) Awareness boards are kept at many strategic locations
- 15) Inside and outside campus activities are regularly carried out

Limitations:

- 1) Limited use of LED lights
- 2) old fans are still in use
- 3) Illumination level is less in many class rooms in old buildings (lights not working)
- 4) Renewable energy usage is less (present 6 solar lights are also not working)
- 5) Electrical panel boards have rats inside to be protected immediately
- 6) Panel boards needs metering, labelling and SLD (Single Line Diagram)
- 7) Dust bins and central collection bins are needed
- 8) Old tubes & e waste to be disposed as per PCB norms
- 9) More awareness boards required
- 10) Automatic controls are implemented (see list below)
- 11) RWH (Rain Water Harvesting) system not maintained

Prioritizing implementation

1)solar street lights 2 nos @ cost Rs. 20,000/-2)composter (small) @ cost Rs. 6000/-3)composter (large) @ cost Rs. 25000/-4) repair of RWH (rain water harvesting) @ cost Rs. 30000/-5)Recharge pit for bore well @ cost Rs. 5000/-6) awareness boards @ cost Rs. 2000/-7) Awareness program (about audit) @ cost Rs. 1000/-8)Energy meter CT and wiring 2nos@ cost Rs. 10,000/-9) Labelling & primary protection for electrical panels@ cost Rs. 5000/-9) Waste collection bins - (Corporation) 10)LED tubes at main places 25nos X300/-each @ cost Rs. 7500/-11)BLDC fans in place of old fans – 10nos x 3000/-each @ cost Rs.30,000/-12)solar off grid system @ cost Rs. 5,00,000/-13) Automation - timer/ occupancy sensor/ day night switch. 1500/- x 2nos each @ cost Rs. 3000/-14)Flow control for taps (Pressure reducer valves) 10 nosX 150/- each@ cost Rs1500/-15)EV charging points for two wheelers @ cost Rs. 5000/-16) Big collector for dry waste @ cost Rs. 5000/-

Other recommendations with long term benefits

- 1)Converting all regular lights to LED lights
- 2) Replacing all fans to energy efficient fans
- 3)Solar 'on grid' system for entire campus
- 4)STP –Sewage Treatment Plant for entire campus
- 5)Composters of higher capacity

----00000000------

4.Introduction

4.1 Introduction : Yuvraja college, Rachana Ener Care & NIE CREST

YUVARAJA'S COLLEGE (AUTONOMOUS), Under UNIVERSITY OF MYSURU:

Yuvaraja's College, one of the four constituent Colleges of the University of Mysore is rich in history. It was first established as an Intermediate College on 24th June 1928 and in the year 1947-48, after Independence, the college was upgraded to a First Grade College. The University Grants Commission conferred Autonomous Status to the college in the year 2005 and it was extended up to 2020 in the year 2012. Currently, it offers various academic programs leading to B.Sc., BCA, BBA, Integrated M.Sc., M.Sc., M.A., M.B.A., and Ph.D. degrees for both boys and girls. Quality enhancement and sustenance being the hallmark of this institution is further proved during the third cycle of reaccreditation by NAAC in December 2015 at 'A' Grade with an upgraded CGPA of 3.34. Recently the college has been granted by UGC the status of College with potential for excellence for the second phase from year 2017-2022.

RACHANA ENER CARE:

Rachana ener care headed by Mr.Anil kumar Nadiger, is a team of experienced and qualified engineers, BEE certified energy manager and auditors. Its team members have undergone many training and certification programs. Such as ECBC, ASHRAE standards, Green buildings ,etc conducted by NPC- National Productivity Council, KREDL – Karnataka Renewable Energy development Itd, ISHRAE – Indian Society for Heating Refrigeration &Air conditioning engineers, SEEM – Society for energy engineers & managers, etc It has conducted many audits to reputed clients like South Western Railways, Karnataka Urban water supply & drainage board, Central workshop, Police training centre, Teresian college, NIE, Institution of engineers India & many more. They also conduct training & workshops for professionals , students & entrepreneurs

NIE CREST:

NIE-Center for Renewable Energy and Sustainable Technologies (NIE-CREST) is a renowned Green technology promoting centre at the premises of The National Institute of Engineering (NIE), Mysore. The centre promotes eco- friendly energy systems, Renewable Energy and sustainable technologies. The Centre itself has successfully implemented numerous projects on eco-friendly and - renewable energy systems and sustainable technologies at International & amp; National Level. NIE -CREST provides technology for, Design & amp; Implementation of Renewable Energy Systems, Design and project, execution of Solar, Biomass & amp; Other RE Devices, Design & amp; Implementation of sustainable Technologies, Design & amp; implementation of Technologies for Green Building, Design and implementation Of Rainwater Harvesting Systems and many more.

4.2 Energy, Environment and Green: Need for conservation & Audit

The rapid urbanization and economic development at local, regional and global levels has led to several environmental and ecological crises. On this background, it becomes imperative to develop & adopt new technologies, system and best practices that could lead to sustainability. Sustainability means meeting our own needs without compromising the ability of future generations to meet their own needs. In addition to natural resources, we also need social and economic resources. Sustainability is not just environmentalism. Embedded in most definitions of sustainability we also find concerns for social equity and economic development.

The Sustainable Development Goals (SDGs) or Global Goals are a collection of 17 interlinked global goals designed to be a "blueprint to achieve a better and more sustainable future for all". The SDGs were set up in 2015 by the United Nations General Assembly (UN-GA) and are intended to be achieved by the year 2030. They are included in a UN-GA Resolution called the 2030 Agenda or what is colloquially known as Agenda 2030. The SDGs were developed in the Post-2015 Development Agenda as the future global development framework to succeed the Millennium Development Goals which ended in 2015.

The 17 SDGs are: (1) No Poverty, (2) Zero Hunger, (3) Good Health and Well-being, (4) Quality Education, (5) Gender Equality, (6) Clean Water and Sanitation, (7) Affordable and Clean Energy, (8) Decent Work and Economic Growth, (9) Industry, Innovation and Infrastructure, (10) Reduced Inequality, (11) Sustainable Cities and Communities, (12) Responsible Consumption and Production, (13) Climate Action, (14) Life Below Water, (15) Life On Land, (16) Peace, Justice, and Strong Institutions, (17) Partnerships for the Goals.

There is need to involve all strata and demography of society to achieve the goals. Accordingly many organizations from global level to local level are striving hard. In India both government & non government organizations are active. BEE, MNRE, KREDL, ISHRAE, SEEM, TERI, IGBC, ASSOCHAM are some of them.

In order to have green campus, energy conservation, renewable energy usage, waste management, greenery maintenance has become main criteria to evaluate. Audit process includes understanding present condition and recommend suitable best possible improvement. Such suggestion will be based on present technology, guidelines by competent authority, limitations in the site and facilities. Suggestions will be out com of data evaluation, creativity, knowledge & experience, which will benefitall

4.3 Scope of Energy, Environment and Green Audit

Energy Audit:

- > Annual energy consumption analysis
- Identify Major connected load & Usage
- Energy Base Line recording .Daily consumption analysis(Voltage, Current, PF, kw, Kwh on each phase - Every min recording for 72 hours, using data logger
- Efficiency rating & effective utilization of major Energy consuming units-Air conditioners, Pumps ,heaters, etc
- Identify energy conservation measures adopted at present –Example LED usage, Star rated fans, fridges, Best practices, etc& possibilities to improve.
- Identify & record renewable energy usage
- > Walk through to identify Major Encon measures
- > Automation , control and measurement meters , presently adopted and possibilities to adopt.
- > Lux level where lights are used in day time & in main places during night time.
- Option & feasibility study for solar roof top capacity based on site, contract demand & energy consumption.
- > Report submission with Return on investment (simple payback period)

Environment audit:

- Water usage & sources
- > LUX level day & night at strategic locations
- > E waste generated and management and action taken
- > Amount of lead generated (UPS & Vehicle batteries)in kgs & action taken
- Solid waste (dry waste) generation and action taken
- ➢ Wet waste generation & action taken
- > Hazardous waste generation & action taken
- Plastic free environment measures.
- Rain water harvesting
- > Waste water management
- Incinerator for sanitary pads

Green audit:

- Greenery maintenance
- Green coverage in campus
- Water bodies.

Expected outcome of energy & environment audit & its implementation:

- ✓ Human Comfort & wellness
- ✓ Energy savings : cost savings
- ✓ Extended equipment life ,reduction in breakdown
- ✓ Extended battery life ; cost savings , lead waste reduction, acid fumes reduction.
- ✓ E waste management; Effective Reuse, Recycle concept.
- ✓ Fuel savings.
- ✓ Awareness to students
- ✓ Awareness to public visiting campus.
- ✓ Water savings
- ✓ Eco system maintenance.

5. ENERGY AUDIT

5.1 Introduction to energy Audit:

As mentioned in the earlier chapter, Energy Audit plays an important role in reducing energy bills. In this we have given detailed analysis of bills and setup is done to understand the flow of energy. We can reduce energy bills up to 30% by adopting low cost investment projects also with less than 2 years payback period. We have collected electricity bills and analyzed to identify energy conservation measures. As there are 3 buildings in the campus such as Yuvaraja College, Maharaja College and VC Guest House the total power consuming is 300660KW per year and less than contract demand. In this case there is a possibility to save the energy as well as the cost minimization. Also we will check the possibilities to use renewable energy sources.

The fundamental goal of energy management is to produce goods and provide services with the least cost and least environmental effect. The term energy management means many things to many people. One definition of energy management is

"The judicious and effective use of energy to maximize profits (minimize costs) and enhance competitive positions" (Cape Hart, Turner and Kennedy, Guide to Energy Management Fairmont press inc. 1997)

Another comprehensive definition is "The strategy of adjusting and optimizing energy, using systems and procedures so as to reduce energy requirements per unit of output while holding constant or reducing total costs of producing the output from these systems"

- To minimise energy costs / waste without affecting production & quality
- To minimise environmental effects.

Energy Audit is the key to a systematic approach for decision-making in the area of energy management.

It attempts to balance the total energy inputs with its use, and serves to identify all the energy streams in a facility. It quantifies energy usage according to its discrete functions. Industrial energy audit is an effective tool in defining and pursuing comprehensive energy management

programme. As per the Energy Conservation Act, 2001, Energy Audit is "the verification, monitoring and analysis of use of energy including submission of technical report containing recommendations for improving energy efficiency with cost benefit analysis and an action plan to reduce energy consumption".

Need for Energy Audit

In any industry or organisation, the three top operating expenses are often found to be energy (both electrical and thermal), labour (salary) and materials. If one were to relate to the manageability of the cost or potential cost savings in each of the above components, energy would invariably emerge

as a top ranker, and thus energy management function constitutes a strategic area for cost reduction. Energy Audit will help to understand more about the ways energy and fuel are used in any industry, and help in identifying the areas where waste can occur and where scope for improvement exists.

The Energy Audit would give a positive orientation to the energy cost reduction, preventive maintenance and quality control programmes which are vital for production and utility activities. Such an audit programme will help to keep focus on variations which occur in the energy costs, availability and reliability of supply of energy, decide on appropriate energy mix, identify energy conservation technologies, retrofit for energy conservation equipment etc. In general, Energy Audit is the translation of conservation ideas into realities, by lending technically feasible solutions with economic and other organizational considerations within a specified time frame.

The primary objective of Energy Audit is to determine ways to reduce energy consumption per unit of product output or to lower operating costs. Energy Audit provides a " bench-mark" (Reference point) for managing energy in the organization and also provides the basis for planning a more effective use of energy throughout the organization. (Information from BEE- Bureau of Energy efficiency Govt of India)

Promoting energy conservation practices in education sector will help to create awareness in students, which in turn will reach society. Students can incorporate such practices in the profession they involve in future or even take up this as career option. Along with energy conservation, use of renewable energy will provide ultimate suitability.

Your college campus has contract demand of 250kva and recorded maximum demand of 150kva. There is need of about three lakh units of energy requirement. This requirement is expected to grow more by another 25%, because of more facilities, e learning environment ,etc. Presently there is no use of renewable energy except six street lights. In this scenario, there is much scope to improve present condition.

Energy audit will analyses present condition and will recommend ways to improve it. This will be done in following ways.

1) study energy source, consumption pattern and power parameters in last three years

2)Study power quality and energy usage pattern in a day (Power quality)

3)Study connected load type, efficiency (DSM –Demand side management) & suggest changes
4)Study other factors that influence energy consumption. Such as water TDS, Lux level, automation
5)Possibility to incorporate renewable energy

5.2 Flow chart

6. Source side data collection & analysis

6.1 Sources of Energy

Different sources of energy used and in progress in the entire campus are as follows:

Sources	Energy	Remarks
CHESCOM(EB)	150 KVA Contract Demand for	Power demand:25-50 KVA Yuvaraja College Energy demand 80,000 units to 90,000 units
		annually
LPG	8 to 10 Cylinders per month	For lab use
Solar Energy	20Wx6Nos= 120W	 Street lights(Presently not working) 10KWP Solar Off grid system is in progress
Diesel Generator	No Generator at present	63KVA Generator installation is in process
Power back up system	93.45 kva	UPS with 2-4 hours back up for computers and labs
Wheeling energy	Nil	Nil

Observation & recommendation:

- Energy consumption is within limit . But, there is need to integrate renewable energy share in utilization.
- ECBC- Energy Conservation Building Code compliance include use of renewable energy and mandates to reserve minimum 25% of roof top space for solar power.
- Energy produced by solar SPVRT* is much economic than all others. Solar energy costs 4 to 5 Rs per unit, Energy by generator costs Rs 25 to 30 rs per unit and present CHESCOM cost of energy is 7.50rs per unit.

(*SPVRT- Solar Photo Voltaic Roof Top system with net metering facility)

6.2 Power connection details

Power sanction details:

	SOURCE: CHESCOM	
	YUVARAJA COLLEGE	
CONSUMER		
		INDUSTRIAL HT 2A
RRNO	HT444(0641504157)	(INSTITUTION)
TARIFF	3HT2AN	
CONTRACT DEMAND (CD)	250 KVA	RS240/- per kva
BILLING DEMAND (BD)	213 KVA	85% OF CD
SUPPLY VOLTAGE	11KV RYB	HT
TRANSFORMER	250KVA	11kv Delta /433v star
		Rs51120/- per
Demand charges	240/-Per KVA	month+TAX
		+/- Fuel cost
Energy charges	Rs 7.30 Per KWH	adjustment + taxes

Sample Electricity Bill:

			CESC	ESC P	N No: 29AACC	C6636P	121			
	Offic	e of the Asst	Executive	Enginee	er (EI), C,O&M Sub-d	ivision - Mys	ore Centra	Due Date	Disconnectio	n D
0641504157	Accou	unt Number	DEALER	455350	01.11.2021 - 01-12	-2021 01-	12.2021	15-12-2021		
(HT444)	064	Type	064156	455360	loctusteigt	- HT29	Whe	eling Energy	0	
EX ECUTIVE EN	GINEER	Tariff			3HT2	A-N	High	Cost Energy		
YUVARAJA & M	AHARAJA	Contract	Demand(K	VA)	25	3	Base	Consumption		
KAR -570001	AISES MY	Recorded	Demand	(KVA)	10	0	Powe	er Cut		
		Billing De	mand (KV.	A)	21	3	Dem	gy Entitlement		
Conception of the local division of the loca	and the second state	Contract State of Females	COLUMN TWO IS NOT		NOTES OF DESCRIPTION		Entiti	ement		
Motor Readings for I	Pater 1d 70865453		-	La MO H	A DESCRIPTION OF THE PARTY OF T					
Present Reading	01-12-2021	8680.25	8771.48	.3995	0.99					
Previous Reading	01-11-2021	0090.74	8684.7	Sector 1						
Difference		84.51	86.78	3995						
Meler Constant		250	290	250						
Lets/Add	-	0	21005	99.875						
Net Consumption		21127.5	21085	99.075	0.992					
		11		.1						
TOD meter rea Time Zo	dings for me	Name of the	Pr	esent	Previous	Consumpti	on MD	Reading		
06:00 Hrs to	10:00	Zone	Re	adings	Readings	-				
Hrs 10.00 Hrs In	18.00	Morning Peak	_	0	0	0		0		
Hrs	18.00	Normal		0	a	0				
18:00 Hrs to Hrs	22:00	On Peak		0		a		0		
22:00 Hrs to Hrs	06:00	Off Peak		0	0	C		0		
			Your	Detailed	Bill	A WHILE WE RATE THAT THE	and strated post and	Contractory of the Party of the	And the state of the second	1000
and the second second			Dema	nd Charge	s. 213.00 KVA at Rs240	00 per kVA	N NORMAGE AND DO	Same and the state of the	51,120.00	1.3
			Fuel C	Cost Adjust	ment Charges: 21,127.50 kWh at ment Charges: 21,127.5	0 KWH at Rs-0.	06 per KWH		154,230.75	
Statistics of the second			Interes	st on Tax	nue				914.87	
			Curren	nt Bill Am	ount				13880.77	
			Bill Co	orrection					5757.00	
and the second second			Bill rot	unding adju	astment				-0.46	
				ay acre som	ount	Rupees Two L	kh Twenty	Four Thousand	224693.00 Six Hundred Nicety	The
			-		6	Ace	over	XA6		
							Sd/-	0		
	Char	·····dee			ectricity a		cor	Poratio		
RR No.	Office	of the Asst.Exec	sutive Engin	neer (EI), (C,O&M Sub-division - I	Mysore Central	Sub-Divisi	an		
0641504157	01-11-203	21 - 01-12-2021	15	5-12-2021	Disconnection	Date 06-	Bill No. 156455360	Account 1 064150	Number Amount	pay
(HT444)		-	-	mercines.				004100	PCS_2240	13.0
the second se		EX CONTROL FX	Checu	INDD NO	C1	and the second se				

6.3 Transformer Details

This campus has a dedicated transformer for all three buildings such as Yuvaraja college, Maharaja college and VC Guest house. Following are the details of Transformer:

Capacity	250 KVA
Contract Demand	250 KVA
Peak Demand	150 KVA
Average Load	60
Percentage	24%
Made by	Kirloskar Electric Co. Ltd.
Made in Year	2008
Winding Material	Copper
Star Label	Nil
Primary Voltage	11000
Primary Current	13.1
Secondary Voltage	433
Secondary Current	333.3
Connection	Delta – Star

Remarks:

- 1) Transformer is not overloaded at any time.
- 2) Transformer is maintained fairly well.
- 3) Recommended to spread gravel stones around the transformer to avoid the growth of weeds.

6.4 Energy consumption pattern of three years

Month	19-20 KWH	20-21 KWH	21-22 KWH
apr	27137	15372	21010
may	23430	16312	13372
june	19467	16875	12262
july	24965	13975	17247
aug	27555	14595	21395
sept	29162	16832	19042
oct	24805	17682	17255
nov	22710	18175	21127
dec	24270	20287	
jan	25947	21835	
feb	26592	24742	
mar	24620	25552	
Avg/mont			
h	25055	18519.5	17838.75
Avg/day	821.4754	608.8603	584.877
Total	300660	222234	142710

Following table gives energy consumption details of last three years.

(Apr , may 2020 and May ,June of 2021 had corona lock down impact)

Monthly Energy consumption pattern since last three years

Maximum, minimum & average Monthly energy consumption of campus from April 2019 to November 2021 is given below.

max	29162
min	12262
average	21027.39

Average monthly energy consumption trend 19-20 to 21-22

To analyse present energy usage trend, we have compared sept-nov 2019 with 20-21 and 21-22 there is decrease trend in energy consumption, even after classes returned to normal.

Month	19-20	20-21	21-22
Sept	29162	16832	19042
Oct	24805	17682	17255
Nov	22710	18175	21127
total energy			
(three months)	76677	52689	57424

Observation & remark:

- Above data gives energy consumption of entire campus, which includes Maharaja college, VC quarters, auditorium etc.
- > There is no sub meters to evaluate performance of each separately.
- > Covid lock down has impacted academic system both during Year 2020 and 2021.
- ➢ In general we find there is increasing trend in energy consumption. There is marginally decrease in consumption pattern

6.5 PF (Power factor)

Introduction:

Power Factor is an expression of energy efficiency. It is usually expressed as a percentage—and the lower the percentage, the less efficient power usage is. Power factor (PF) is the ratio of working power, measured in kilowatts (kW), to apparent power, measured in kilovolt amperes (KVA).

Month	Year - 2019	Year - 2020	Year - 2021
January	-	0.99	1
February	-	0.99	0.99
March	0.99	0.99	0.99
April	0.99	1	1
May	1	1	1
June	1	1	1
July	0.99	1	1
August	0.99	1	1
September	0.99	1	1
October	1	1	1
November	1	1	0.99
December	1	1	-

Study: We have tabulated power factor value of three years on monthly basis.

Remark: Institution has maintained excellent power factor of 0.99 to unity.

6.6 MAXIMUM DEMAND (MD)

Maximum demand is the highest level of electrical demand monitored in a particular period. All HT consumers will have contract demand with ESCOM based on their load. ESCOMS will bill the consumer at 85% of contract demand and maximum demand recorded by meter, whichever is higher. Study: based on ledger extract of CHESCOM, we have tabulated maximum demand for four years as below.

	Contract	Billing	Maximum		
month/year	Demand	Demand	Demand	Excess KVA	EXCESS AMOUNT
Mar-19	250	213	141	72	16790.4
Apr-19	250	213	110	103	24019.6
May-19	250	213	86	127	29616.4
Jun-19	250	213	74	139	32414.8
Jul-19	250	213	130	83	19355.6
Aug-19	250	213	126	87	20288.4
Sep-19	250	213	125	88	20521.6
Oct-19	250	213	105	108	25185.6
Nov-19	250	213	81	132	30782.4
Dec-19	250	213	92	121	28217.2
Jan-20	250	213	112	101	23553.2
Feb-20	250	213	135	78	18189.6
Mar-20	250	213	133	80	18656
Apr-20	250	213	39	174	40576.8
May-20	250	213	56	157	36612.4
Jun-20	250	213	57	156	36379.2
Jul-20	250	213	50	163	38011.6
Aug-20	250	213	61	152	35446.4
Sep-20	250	213	67	146	34047.2
Oct-20	250	213	57	156	36379.2
Nov-20	250	213	62	151	35213.2
Dec-20	250	213	71	142	33114.4
Jan-21	250	213	83	130	30316
Feb-21	250	213	102	111	25885.2
Mar-21	250	213	95	118	27517.6
Apr-21	250	213	93	120	27984
May-21	250	213	29	184	42908.8
Jun-21	250	213	29	184	42908.8
Jul-21	250	213	70	143	33347.6
Aug-21	250	213	84	129	30082.8
Sep-21	250	213	76	137	31948.4
Oct-21	250	213	83	130	30316
Nov-21	250	213	100	113	26351.6

Graph of Contract demand, Billing demand, recorded maximum demand in kva v/s month & year

Remarks:

As per the three years electricity bill, we have recognized that the institution has taken 250 KVA contract demand but they are using below 150 KVA and Cheskom is billing for 213 KVA. Recommendation:

- 1) Institution may reduce 50 KVA contract demand. This will reduce about Rs 10,000/- in mothly electricity bills .
- 2) If campus is planning to install Solar roof top in near future, it not recommended to reduce contract demand. (ref Chapter9 Renewable energy)

6.7 Category of connected load & impact on source

Loads are classified on different category based on their function and electrical characteristics. They have different impact on the electrical system.

		Total		
		Wattag		
SL	Category of load	е	% load	Remark
А	Illumination with Regular tubes & CFLS	52649	27.094	low PF non surge
В	LED lighting	3020	1.554	high PF ,non surge
С	Fans of all types	33035	16.999	med PF, non surge
D	Air conditioning ,fridge, freezer	17090	8.794	med PF, surge
	Computers, IT & peripherals , lab equipments			
E	thro UPS)	88510	45.547	Med PF, non surge
F	PUMPS (motor load) RO	9	0.005	Med PF , surge
G	Miscellaneous	15	0.008	NON surge, Med PF
	Total	194328	100.000	

Note

NOTE:	
Low PF 0.6 & below	
Medium PF - 0.6 to 0.8	
High PF 0.8 to 1.0	
Non surge - regular staring current	
Surge load - 3to 5 times starting current	

Impact on grid:

Load characteristics	Impact on system
Low PF & surge	Very high
Medium PF & surge	High
Low PF & non surge	Medium
High PF & Non surge	Nil

PIE chart

Concluding remark:

- > Consumer does not have any such load , which will have impact on grid.
- There are certain equipments such as UPS, Air conditioners, old tubes which have low to medium power factor. But automatic power factor capacitors have corrected power factor to near unity.

7. POWER QUALITY

7.1 Introduction Power quality

Power quality refers to the ability of electrical equipment to consume the energy being supplied to it. A number of power quality issues including electrical harmonics, poor power factor, voltage instability and imbalance impact on the efficiency of electrical equipment.

This has a number of consequences including:

- Higher energy usage and costs
- Higher maintenance costs
- Equipment instability and failure

Energy management is an important consideration for any business, and it is critical that power quality be assessed as part of any energy management strategy.

Common Power quality problems includes Voltage variations, Voltage un balance, Power factor, Load unbalance

Your campus has dedicated transformer with 3phase supply and majority loads are ingle phase, there are chances of any of above issues. Power quality analysis will study above parameters for minimum 72 hours using advanced data log & soft ware tools more precisely. Samples bearing collected every minute basis for more accurate results

Followings graphs were platted based on data collected:

- 1)Loading (power) on R, Y, B phase
- 2)Total power on each phase
- 3) Power variation on ach phase & total
- 4) voltage variation on each phase
- 5) power factor variation
- 6) Energy consumption

NOTE; Your new building had necessary facility to connect data log. But old building did not had necessary facility to connect data logger unit. So we recorded main power parameters of old building using power analyser by frequent visits.
7.2 Voltage variation

Remark:

1)Most of equipments run on single phase , hence voltage on each phase is plotted.

Voltage is higher on each phase. Voltage between 220 -240 is suitable for your application. But voltage is between 240-260 volts most of time. However most of sophisticated equipments used in college is connected through UPS. Working range of UPS will be 170Vac to 270VAC. Above voltage variation will not have much impact.

2)Entire campus is connected to one single transformer of 250 kva. Transformer has tap changing facility (ref chapter 6.3 transformer). By using tap changer voltage level can be reduced.

TRANS		ME	R	Kirle	skar.
THF SERIAL No. 98 FD 12	1/228		VEADOCH		2.0.0
KVA SPECIFICATION FREQUENCY VOLTS AT NO LOAD LV AMPERES HV PHASES HV OTD MAX TEMP RISE IN INSULATION LEVEL WINDING MATERIAL ORDER/CONTRACT NO.	250 IS: 2026 50 SEE TABLE 1 SEE TABLE 1 SEE TABLE 1 333.3 THREE-DELTA THREE-STAR DIL/WDG OV LI 75 AC 2 COPPER	IMPDV AT 75% VECTO CORE 2 OIL OIL TOTAL TRANSI ER AMBIE 28 / AC 3	VOLTS [] C % [] R GROUP F COOLING & WDGS WEIGHT PORT MASS NT OF 50	POSN1 PC B kg kg litres kg 1 s kg 1 s kg 1 c 50	SN3 POSN yn11 NAN 10 80 30 160 160 160 °C 55 °C
			TABLE -	1	
	BOOM		HN	/	LVI
wner P1 6	-0 S1	CONNECT	VOLTS	AMPS	VOLTS
200 201	2	$\frac{6}{7} = \frac{7}{6}$	11550	12.5	
2N 1U 9 1V 9 1W	: 3	5 - 8	11275	12.8	
	4	8 - 4	10725	13.1	
	5	4 - 9	10450	13.5	433
	6	9 - 3	10175	14.2	11000
03 03	63 1	3 - 2	9900	14.6	10000
05 06 07 08 09 02 02	11 /21 /21 /21 /21 /21 /21 /21 /21 /21 /	ATU AND	WTI CT DET 4503 A, 201 NOTE : IF WT WTI CT SEC	AILS AS PER M. ACCURAC I IS NOT USE MUST BE SH	IS : 2705 : TY CL S. D THEN ORTED
	KAR EL		C CO.	LTD.	

7.3 Load variation

(a)R phase power variation from 4/2/22 to 7/2/22 (watt v/s Date& time)

(b)Y phase power variation from 4/2/22 to 7/2/22 (watt v/s Date& time)

(c) B phase power variation from 4/2/22 to 7/2/22 (watt v/s Date& time)

(d) Total Power consumption (including all three phases) on 4th feb 2022

(e)Total Power consumption (including all three phases) on 5th feb 2022

(f)Total Power consumption (including all three phases) on 6th feb 2022

(g)Total Power consumption (including all three phases) on 7^{th} feb 2022

(h)Total Power consumption (including all three phases) on 4^{th} to 7^{th} feb 2022

(i)Total Power consumption (including all three phases) on 4th to 7th feb 2022 (in all three phases)

Phase	R	Y	В	total
Minimum W	162.0573	175.6036	487.9177	990.9067
Maximum W	5913.176	5442.825	9368.284	18061.99
Average W	1222.566	1152.275	1672.354	4047.169

Observation & remark:

- Above graphs are related to new building panel. Old building did not had facility to install data logger.
- There is load un balance in loading on each phase. Blue phase has more load and Red has less load. This will be common in single phase and varying loads. But power on any phase has not crossed any safety limit. Leakage current in neutral is also with in safety limit.

7.4 Energy consumption on different days

Average power		
Friday / Monday (4 th & 7 th	Average power Saturday	Average power Sunday (6 th
feb2022)	(5 th feb 2022)	feb2022)
4752.167	5050.741	2178.574
Energy Friday / Monday	Energy Saturday	Energy Sunday
114.052	121.217	52.285
	287.555	

(a)New building energy consumption recorded by digital data logger

(b)For monthly consumption based on manual data reading at different time interval (ref chapter TOD)

Calculate based on above for old building

Duration	8 hours	16 hours
Power Average (w)	7000	3000
Energy KWH	56	48
Total KWH (units)	104	per day

(c) Estimated energy consumption per month

	New building	Old building	No of days per	Total					
	KWH (UNITS)	KWH (UNITS)	KWH (UNITS)	month	KWH (UNITS)				
Normal working day	121	104	235	25	5875				
Sunday /holiday	52	30	82	5	410				
Additional con	sumption by any	event, programs	etc KWH (UNITs,	5)	715				
Estimated energy consumption per month KWH (UNITS)									

(d)Peak power consumption (maximum demand)

Old building	11 KW
New building	12 kw
Total	22kw

SAY 25 KW (Momentary surge load is not considered)

7.5 TOD ENERGY

TOD (Time of Day) is the term used in energy sector for defining energy consumption on dieerent time of day. It will be usually divided in to four zones or as per need.

(a) NEW BUILDING

Following graph gives variation on working day 5th feb 2022 Saturday

	0 hrs-	6.30am to 9.30	9.30 am to		7.00pm to
TOD	6.30 am	am	5.00pm	5.00pm to 7.00pm	12midnight
Average					
Power	2524.07				
(w)	2	9995.351	6417.288	6314.996	2825.757
Energy					
кwн	16.406	19.990	48.129.	12.629	14.128
%	15%	18%	43%	11%	13%

Total 111.285 kwh per day

(b) OLD BUILDING;

Date	Time					Total Power(W)				
01-02-2022	01:15 PM									
	R	Y		В						
Voltage	238.5		242.6		239					
Current	10.9		11.4		17.8					
PF	0.87		0.9		0.88					
Power (w)	2261.70		2489.08		3743.70	8494.47				
Date	Time									
02-02-2022	10:45 AM									
	R	Y		В						
Voltage	231.8		237.3		235.3					
Current	12.9		7.73		18.72					
PF	0.78		0.89							
Power (w)	2332.37		1632.55		3964.33	7929.26				
Date	Time									
02-02-2022	12:00 PM									
	R	Y		В						
Voltage	233.3		237.2		235.9]				
Current	12.47		4.76		23.98					
PF	0.84		0.82		0.95					
Power (w)	2443.77		925.84		5374.04	8743.65				
Date	Time									
02-02-2022	05:15 PM									
	R	Y		В						
Voltage	245.6		249.5		243.6					

Current	3.45		5.88	1	0.1	
PF	0.79		0.83	0	.92	
Power (w)	669.38		1217.66	2263	.53	4150.57
Date	Time					
03-02-2022	09:30 AM					
	R	Y		В		
Voltage	244.6		249.1	24	4.6	
Current	2.61		4.95	6	.81	_
PF	0.79		0.89	0	.91	
Power (w)	504.34		1097.41	1515	.81	3117.56
Date	Time					
04-02-2022	11:20 AM					
	R	Y		В		
Voltage	238.6		242.6	24	0.6	
Current	17.11		13.3	26	.28	_
PF	0.69		0.77		0.9	
Power (w)	2816.89		2484.47	5690	.67	10992.03
Date	Time					_
05-02-2022	11.30am					
	R	Y		В		
Voltage	235.3		243.9	23	7.9	
Current	13.93		12.45	21	.53	
PF	0.8		0.8	0	.91	
Power (w)	2622.18		2429.24	4661	.01	9712.44

Energy of old building

Duration	8 hours	16 hours
Power Average (w)	7000	3000
Energy KWH	56	48
Total KWH (units)	104	per day

7.6 PF variation

(a) Phase wise PF variation in new building

Remark:

- > Institution has majorly inductive load such as old tube lights, fans & UPS.
- Old building has lagging power factor. New building has lading power factor. In over all the entire premises has maintained good power factor.
- Over rated PF capacitor in new building can be reduced to unity by decreasing capacitor value. In general central power factor correction panel is most suitable for your type of application.

Image of capacitor at new building panel board

8 DEMAND SIDE MANAGEMENT(DSM)

8.1 Introduction : Demand Side Management (DSM) has been traditionally recognized as one of the major intervention to achieve reduction in energy demands while ensuring continuous development. In recent past, DSM has gained unprecedented importance and has become an integral part of almost all the central and state missions on promotion of Energy Efficiency. DSM interventions have helped utilities not only to reduce the peak electricity demands and but also to defer high investments in generation, transmission and distribution networks.

Demand-side management is the active planning and implementation of programs that will change consumers' use of electricity. These programs may encourage the adoption of more efficient appliances, the use of new technologies, and the time these and other devices are used.Demand-side management programs result from the planning and implementation of those activities designed to influence consumer use of energy in ways that will produce desired changes in the time pattern and magnitude of energy demand. Programs and initiatives falling under the umbrella of demand-side management include load management, new uses, strategic conservation, electrification, and adjustments in the market share of energy-consuming devices and appliances.

In simple way, DSM is analysing the load , equipment efficiency, sizing and usage pattern to optimise energy consumption. However while implanting any changes no compromise has to be made in safety, productivity and comfort level. Amount of investment , pay back period (ROI- Return on investment) amount of waste generation & pay back period will be given due preference.

Demand side management to achieve ENCON (energy conservation) is major and critical phase of any comprehensive energy audit. Such recommendation will be outcome of knowledge, experience, expertise and creativity of audit team

8.2 Details of connected load type, power and statistics in the institution

				Total	
Sl no	TYPE OF LOAD	Nos	wattage	wattage	% Load
		120	10	40200	24.04450
1		/	40	48280	24.84459
2	Magnetic choke slim Tube	35	36	1260	0.648388
3	CFL luminary 60 W (2ftX2ft 3 CFL set)	36	60	2160	1.111523
4	Focus Light 100w	2	100	200	0.102919
5	Concealed Round lamp 9 W	82	9	738	0.37977
6	LED Tube	102	20	2040	1.049772
7	Yard light LED	12	20	240	0.123503
8	LED fitting 6inX6in 20 W +bulb	12	20	240	0.123503
9	CFL	1	11	11	0.005661
10	LED luminary	25	20	500	0.257297
11	Ceiling fan Fan (very old)	17	85	1445	0.743588
12	Ceiling fan (old)	376	70	26320	13.54411
13	Ceiling fan (new)	30	55	1650	0.84908
14	Wall Fan	54	60	3240	1.667284
15	Exhaust Fan	4	50	200	0.102919
16	Pedestal Fan	3	60	180	0.092627
17	Projector	30	500	15000	7.718908
18	Computer System	183	200	36600	18.83414
19	Printer with scanner	39	750	29250	15.05187
20	Fridge	20	200	4000	2.058376
21	Freezer	3	350	1050	0.540324
22	Xerox	5	1500	7500	3.859454
23	TV (old + new) 60+80	2	70	140	0.072043
24	Split Air conditioner	8	1500	12000	6.175127
25	Central air conditioner (4 compressors)	1	40	40	0.020584
26	pumps (2 reg + borewell)	3	3	9	0.004631
27	Lab equipments	L/s	avg	20	0.010292
28	Misc (CCTV,RO,UPS CHARGING, etc)	L/S	avg	15	0.007719
	TOTAL CONNCTED LOAD (watt)			194328	100%
	UPS CAPACITY	24	98450	kva	
	Loads wattage are taken as average				
	<u> </u>				

This chapter is cumulative information of all types of connected load.

8.3 Load Distribution (Section wise)

			Fana		C R													Drinto						
			ranc V	100	р *	LED	D		*FL				Wa	Ex		Proj		r						
	от	so	ĊFL	w	9	Tub	Fix		Lig	v.oc	OCF	NCF	П	Fan	*S.	ecto	Syste	scann	Fridg	Freez	Xero			A/
Room	*	Т*	60W	FL*	w	е	*	CFL	ht	F*	*	*	Fan	*	Fan	r	m	er	e	er	x	UPS Capacity	тν	С
AU Chamber	2												1				1							
PriclAnti	-												-				-					1050VA	1	
Chamber	3	1									1						1	1				/12VDC	(Old)	
Principal															1/								1(LC	
Chamber	2					4					2				Old		1	1					D)	
Society	3					<u> </u>									1/ Ol									
Office	9									1	1		5				11	11			2			
Ladies Room	5										1				1							10000VA /180VDC		
Language																						5000VA		
Lab	4										5						3	2				/120VDC		
CB											06													
Building	304										90													
RB Rooms						60						24												
Old Building	20										12					1								
Ground Floor	1	3																						
Lecture																								
Hall	3										2													
Room No.	10										Λ					1								
38 ND	12										4					T								
Building	84										28					7	7							
NB																								
Building	21																							
Corridor	21																							
Examinatio n Section	47										10						7					5000VA/120V DC		
Botony Hall	12										10					2								
Electronics	6										4					1								
MicroBiolo																								
gy Lab 1	16										7								1					
MicroBiolo											_													
gy Lab 2	14										5					1			2	1				
Staff Room	16							1-			5						3	2				5.2kva/72		

11w

OT*- Old Tube SOT* -Small Old Tube FL* - Focus Light CRB* - Conceiled Round Bulb Led Fix* - Led 1/2 Feetx1/2 Feet *FL Light - Fancy Led Light

V.OCF* - Very Old Ceiling Fan OCF* - Old Ceiling Fan NCF* - New Ceiling Fan EX Fan*- Exhaust Fan *S Fan - Stand Fan

			Fanc	10 0	CR	LED			FL				Wal	Ex	S.			Printer				UPS		
Room	от	SO T	y CFL 60W	W FL	B 9W	Tub e	LED Fix	CFL	Ligh t	V.OC F	OCF	NC F	l Fan	Fa n	Fa n	Projecto r	Syste m	scanne r	Fridg e	Freeze r	Xero x	Capacit v	T V	A/ C
ComputerScienceCS/1	18										6						20					5000VA		
ComputerScience(S/2	12										6						30					5000VA		
computersciencecs/2	12										0						50					//2VDC		
BioChemistry Lab 1	20										6											50001/4		
BioChemistry Lab 2	14										6			4					1	1		/72VDC		
Biochemistry Staffroom	16										3						2	2						
Biotec Lab 1	16										4			2					1			3000VA /48VDC		
Biotec Lab 2	14										6								1					
Biotec Staff Room	16										4						1	1						
Molecular Biology Lab 1	18										3					1	1		1	1		1000VA /12VDC		
Molecular Biology Lab 2	14										6					1			3			2000VA /48VDC		
Electronics Lab	12										6					1	3					5000VA /72VDC		
HOD Chamber	4										1						1	1						
Botony	12										6					3								
Botony Corridor	3																							
Botony HOD Chamber	4										2						1	1						
Sangrahalaya	12									4														
Firstfloor Practicalhall	11									2						1								
Practicalpreparationhal	1									1				1										
Practical Hall 1	11									2						1			1					
Staff Room	13									5							4	4						1
Botony PG(Electronics)		4									2						2	2						

OT*- Old Tube SOT* -Small Old Tube FL* - Focus Light CRB* - Conceiled Round Bulb Led Fix* - Led 1/2 Feetx1/2 Feet *FL Light - Fancy Led Light V.OCF* - Very Old Ceiling Fan OCF* - Old Ceiling Fan NCF* - New Ceiling Fan EX Fan*- Exhaust Fan *S Fan - Stand Fan

			Fanc	10 0	CRB	LED			*FL				Wal	Ex	*S.	.		Printer						
Room	OT *	SO T*	y CFL 60W	W FL*	* 9W	e	LED Fix*	CFL	Ligh t	V.OCF *	OCF *	NCF *	l Fan	Fan *	Fa n	Projecto r	Syste m	scanne r	Fridg	Freeze r	Xero x	UPS Capacity	T V	A/ C
Class Room 1		12									4													
Class Room 2		4									2													
Botony 2nd floor Lab 3	3					9						6				1	1							
Serculture Room 1	6										4					1	1		1					
Hod Room	3										2						1							
Serculture Practical Hall	10										5					1			2			3000VA /48VDC		
Zoology Lab 1	9										5		1			1	3				1	5000VA /72VDC		
Asha Devi Madam Room	1										2						1	1	1					
Environmenta I Biology Lab	7										1						3							
Zoology Museum	4																							
HOD Room	3										1						1		1					
Zoology Practical Hall 2	5										2					1	1					3000VA /48VDC		
Class Room	5										4					1	1							
Kannada Staff Room	2												1				1	1						
Geology	10										4						4	2						
Geology Lab	4										3						1							
Geology Museum	6										3													
Geology Lab 2	4										2											Faulty		
Geology Lib	8										2													
Geology Remote Sen.	14										2						8							
Envirl Science	10										5											2kva/48		

52 | Page

 	 					-		 			-		
						1							
												V	
						1						v	
				1									

OT*- Old Tube SOT* -Small Old Tube FL* - Focus Light CRB* - Conceiled Round Bulb Led Fix* - Led 1/2 Feetx1/2 Feet *FL Light - Fancy Led Light V.OCF* - Very Old Ceiling Fan OCF* - Old Ceiling Fan NCF* - New Ceiling Fan EX Fan*- Exhaust Fan *S Fan - Stand Fan

	ОТ	so	Fanc y CFL	10 0 W	CRB *	LED Tub	LED		*FL Ligh	V.OCF		NCF	Wal I	Ex Fan	*S. Fa	Projecto	Syste	Printer scanne	Fridg	Freeze	Xero	UPS Capacit	т	A/
Room	*	1*	60W	FL*	9W	e	FIX*	CFL	t	*	OCF*	*	Fan	*	n	r	m	r	e	r	x	У	V	C
Mathematic s Staff Room	6										3						2	2			1	1500VA /24VDC		
Mathematic s Lab	2										2					1	25					5200VA /72VDC		2
Statistics Laboratory									25n o 2ft								21	2				5000VA /72VDC		3
Board Room	4										4					1								2
BSE 1st Floor Lab 1	6					1					3								1					
Staff Room	3					1					2						1	1						
Physics Staff Room	3					1					2													
HOD Room	2										1						1	1						
Einstein Hall	6										2					1								
BSE 2nd year Lab		6									3													
Physics Lab 3	7										2Fault y											5kva/72		
Physics Lab 4	7										2													
MSE Lab	6												3											
Chemistry Ladies Staff Room	1										1													
Chemistry Gents Staff Room	3	2				1					2						1							
Chemistry Lab 1	8												3											
Chemistry Lab 2	6												4						1			2000VA /24VDC		
Instrument Room	6										1		1									-		
HOD Staff	8										2						2				1			
Store Room	8																							

OT*- Old Tube SOT* - Small Old Tube FL* - Focus Light CRB* - Conceiled Round Bulb Led Fix* - Led 1/2 Feetx1/2 Feet *FL Light - Fancy Led Light

53 | Page

V.OCF* - Very Old Ceiling Fan OCF* - Old Ceiling Fan NCF* - New Ceiling Fan EX Fan*- Exhaust Fan *S Fan - Stand Fan

			Fanc	10 0	CRB	LED			*FL				Wal		*S.			Printer				UPS		
Room	ОТ *	SO T*	y CFL 60W	W FL*	* 9W	Tub e	LED Fix*	CFL	Ligh t	V.OCF *	OCF *	NCF *	l Fan	Ex Fan*	Fa n	Projecto r	Syste m	scanne r	Fridg e	Freeze r	Xero x	Capacit v	T V	A/ C
Research Lab	8													4						_		1		
Research Lab 2	4										1			1			1							
Chemistry Research Lab	6												1	2										
Chemistry Research Room	5												2											
Chemistry Lab 3	12												5	3 Fault V										
	12										6		2	3 Fault										
Chemistry Lab 4	12										0		5	У								2000\/A		
Chemistry Lab 5	16										6			3					1			/24VDC		
Chemistry Lab 6	7										4													
Chemistry Lab 7	10										6								1			2000VA /24VDC		
English Staff Room	10										2													
Hindi Department		3											1				1	1						
NSS Room											1													
Food Science HOD Room													5	4			2					5000VA /72VDC		
Food Science Lab	8		6				2*				4													
Gym						25							10											
Auditorium	28		7	2			12+2 *			2			3											
Platinum Jubilee Hall	50		23		82								5											4
Yard Light						12																		

OT*- Old Tube SOT* -Small Old Tube FL* - Focus Light CRB* - Conceiled Round Bulb Led Fix* - Led 1/2 Feetx1/2 Feet *FL Light - Fancy Led Light V.OCF* - Very Old Ceiling Fan OCF* - Old Ceiling Fan NCF* - New Ceiling Fan EX Fan*- Exhaust Fan *S Fan - Stand Fan

54 | Page

8.4 LIGHTING

Light emitting Diodes Popularly known as LEDS are most efficient lighting systems. They produce highest lumens per watt of energy consumed compared to florescent tubes, CFLS, metal halide and mercury sodium vapour lamps. It has better colour rendering index and give cool white light for regular use. Luminous efficacy will be the range of 100 to 120 lumens per watt. Apart from above it doesn't has mercury content as in case of florescent lamps. Other added advantages are high input power factor and low heat dissipation. This low heat dissipation will also help in reducing heat load on air conditioners. Bureau of energy efficiency has made use of LED lights as compulsory measure in its Energy conservation building code.

Institution has very less number of LED lights as discussed in connected load chapter LED constitute less than 5% of other types of loads. We recommend to replace all luminaries to LED, in phased manner. Sample calculation along with pay back on investment along with other advantages is given below.

	Proposal: Changing old tubes to LED		
	tubes	VALUE	remark
А	Present power (Watts)	40	average watts
В	proposed equipment power (watts)	20	watts
С	savings in power per equipment (watts)	20	watts
D	Quantity (nos)	1242	Nos
	Hour of use per annum (per day X 300		
E	days)	1500	5 hours per day 300days
	savings KWH per annum (C X D X		
F	E)/1000	37260	units
G	cost savings @ rs 7.50/unit (F X 7.50)	279450	Rs per annum (incl tax)
н	Investment per equipment	350	Rs (approximate)
1	Total invest (H X D)	434700	Rs (approximate)
J	Return on investment (ROI) D 14/D11	1.56	years
К	Co2 savings (F x 1.20 kgs) D9*1.2	44712	kgs (based on CEA verl4.O 2018)

Other advantages
Reduction in mercury waste 3 to 5 mg from each tube /CFL
easy to handle after end of life
improved power factor (PF)
Recommendation:
To replace all lights to LED in phased way
Tubes which are in regular use can be replaced on priority
LED lights have about 50000 hours life

Note:

yard has 100w 2nos focus lamp which can be converted to LED of 50w

CFL fittings are used in auditorium & other places.

CFL can be replaced to LED, only when present luminary burns out

Pay back period varies depending on actual purchase cost, usage, buy back,tax etc

8.5 FANS

Introduction : Most of the fans used in building are ceiling fans with 1200mm sweep. How ever fans can be of different sizes. Based on blade size of fan BEE has fixed air delivery and power consumption, which is termed as service value .

Sr No	Fan Blade Size(mm)	Minimum Air Delivery (m³/minute)	Minimum Service Value (m³/minute/Watt)
1	900	130	3.1
2	1050	150	3.1
3	1200	210	4.0
4	1400	245	4.1
5	1500	270	4.3

New BEE Star Rating Table

Star rating plan table based on the fan blade size is divided into two parts:

1. For sweep size<1200 i.e., for blade sweep of 900 mm and 1050 mm following would be the star rating plan:

Star Rating	Service Value
1 star	≥ 3.1 to < 3.6
2 star	≥ 3.6 to < 4.1
3 star	≥ 4.1 to < 4.6
4 star	≥ 4.6 to < 5.1
5 star	≥ 5.1

2. For sweep size ≥ 1200 mm i.e., for blade sweep of 1200 mm, 1400 mm and 1500 mm the star rating plan would be as shown in the table below. Only the 1 star rated value is different for three different sweep sizes; rest others are same:

Star Rating	Service Value
	≥ 4.0 to < 4.5 for 1200 mm
1 star	≥ 4.1 to < 4.5 for 1400 mm
	≥ 4.3 to < 4.5 for 1500 mm
2 star	≥ 4.5 to < 5.0
3 star	≥ 5.0 to < 5.
4 star	≥ 5.5 to < 6.0
5 star	≥ 6.0

As evident from the above table, for the fans with the blade sweep of 1200 mm and above (that's where the majority of ceiling fans lies) to achieve a 5-star rating, it would require a *service value* of minimum 6.0. This is difficult for the fans running on an induction motor. We reckon that newer 5-star rated models would mostly be powered by BLDC motors. And this is good news because BLDC motor is much more energy-efficient and makes it possible for added functionality like wireless control (remote control). You can read how BLDC fan can actually help you to reduce your electricity bills by up to 65%.

	proposal: replacing very old & old ceiling		
	fan to BLDC fan		remark
А	Present power (Watts)	80	average
В	proposed equiment power (watts)	30	BLDC advance technology
С	savings in power per equipment	50	
D	Quantity (nos)	393	17 very old + 376 old
	Hour of use per annum (perday X 300		
E	days)	1500	3 hours per day 300days
	savings KWH per annum (C X D X		
F	E)/1000	29475	units
G	cost savings @ rs 7.50/unit (F X 7.50)	221062.5	Rs per annum (incl tax)
Н	Investment per equipment	2500	Rs (aproximate)
Ι	Total invest (H X D)	982500	Rs (aproximate)
J	Return on investment (ROI) I/G	4.44	years
К	Co2 savings (F x 1.20 kgs) F X1.2	35370	kgs (based on CEA verl4.O 2018)
Other adv	vantages		
Low noise	e level, improved PF		

recommendation:

Replace stage by stage . Considering usage level & preset fan condition

Very old fans can be replaced on priority

Note: these fans have remote control, it may be difficult to manage in class rooms

Pay back period varies depending on actual purchase cost, usage, buy back,tax etc

BLDC ceiling fan is one type of ceiling fan which consumes lower electricity compare to normal induction fan. It's also called energy saving fan or brushless dc fan. The full form of BLDC is **Bush Less Direct current**. With the use of BLDC motor in ceiling fan we can save 50% electricity in the ceiling fan. These fans will run & controlled by electronic circuitry. IR based remote controls will be used instead of present conventional fan regulators to control the speed

8.6 UPS

Introduction: Uninterrupted Power Supply systems are integral part of any building. It may be used for emergency lighting or for computer and related systems. There are two major types of UPS. One is off line UPS and another is online UPS. Offline UPS takes power from mains when there is regular power supply and draws power from battery when regular power supply fails. Online UPS on other hand works on continuous double conversion. In simple words there is continuous conversion of Dc (battery) power to Ac (regular power) and Ac power to DC. Hence Online UPS consume more energy than off line. However for more sophisticated equipments online UPS gives more stable power.

OFF LINE UPS

ONLINE UPS

Location	UPS Make	Nos. of Battery	Types of Batteries y (KVA)		VD C	АН	UPS TECH	Remark
Principal Auto &						10		
Chamber	Luminous	1	Tubular	1.05	12	0	Offline	
						10		
Ladies Room	Luminous	15	Tubular	10	180	0	Online	
	Drocom	10	Tubular		120	10	Online	
	PIUCUIII	10	Tubulai	5	120	10	Uniine	
Examination Section	Procom	10	Tubular	5	120	0	Online	
						10		
Staff Room	Luminous	6	SMF	5.2	72	0	Offline	
_	TPC Sine					10		
Computer Science CS/1	Wave	4	Tubular	5	48	0	Offline	
Computer Science CS/2	Brocom	6	Tubular	E	70	10	Online	
	PIUCUIII	0	Tubulai	5	12	10	Unine	
Bio Chemistry Lab 2	Procom	6	Tubular	5	72	0	Online	
,						10		
Biotec Lab 1	Procom	4	Tubular	3	48	0	Offline	
						10		
Molecular Biology Lab 1	Genesis	1	Tubular	1	12	0	Online	HFOL
Molocular Piology Lab 2	Genesis		SME	2	10	10	Online	
		4		2	40	10	Unline	HFUL
Electronics Lab	Procom	6	Tubular	5	72	0	Online	
						10		
Serculture Practical Hall	Procom	4	Tubular	3	48	0	Offline	
						10		
Zoology Lab 1	Procom	6	Tubular	5	72	0	Online	
Zoology Practical Hall 2	Brocom		Tubular	2	10	10	0.000	
	PIUCUIII	4	Tubulai	3	40	10	Offline	
Geology Lab 2 UPS - 1	Inteligent	1	Tubular	1	12	0	Offline	Faulty
						10		
Geology Lab 2 UPS - 2	Inteligent	1	SMF	1	12	0	Offline	Faulty
	Digital					10		
Environmental Science	Inverter	2	Tubular	2	24	0	Offline	
Mathomatics Lab	Luminous	6	Tubular	E 2	70		0.000	
	Lummous	0	Tubulai	5.2	12	10	Omine	
Statistics Laboratory	Procom	6	Tubular	5	72	0	Online	
,						10		
Physics Lab 3	Procom	6	Tubular	5	72	0	Online	
						10		
Chemistry Lab 2	Silicon	2	Tubular	2	24	0	Offline	

						10		
Chemistry Lab 5	Silicon	2	Tubular	2	24	0	Offline	
						10		
Chemistry Lab 7	Silicon	2	Tubular	2	24	0	Offline	
						10		
Food Science HOD Room	Procom	6	Tubular	5	72	0	Online	
Total	25	121		93.45				

UPS	Nos. of UPS	KVA
Online UPS	12	58
Offline UPS	13	35.45

Approximate Loading 30-40%

Battery Type	Weight*Nos. of Batteries	Total Weight
100 AH Tubular	21 KG Each*110	2310 KG
100 AH SMF	32 KG Each*11	352 KG
Total Lead		2662 KG

Remark:

All UPS are loaded at 30-40% most of the time.

All the batteries are of higher capacity for longer back up

Online UPS have medium PF of 0.7 to 0.8.

Overall efficiency of online UPS is about 60-75%,. Recommendations:

- 1) It is planned to have generator backup for the new building. Battery capacity can be reduced after generator back up is provided. This will reduce cost & lead waste generation.
- 2) UPS front switch can be switched off during Sundays and night hours to reduce no load loss.
- 3) Battery charging current during above non working time can be reduced by use of SMPS charger. This will enhance battery life and reduce risk of UPS fail in night time.
- 4) Offline UPS with static changeover, IGBT design is more energy efficient. This will reach the need of many appliances of less than 5 KVA capacity.

5) Energy saving by output off in night time (online UPS only)

No load loss of inverter section	= 1200watts
100w x 12 nos	
Considering 16 hours per day X 365 days	=1.2kwx 16 x365 =7008 units per annum
Of no load running	
Investment	nil
Pay back period	immediate
Cost savings @ 7.50 per unit	7008 X 7.5 = 52560/- Rs
Co2 saved at 1.2kg/unit	8410 kgs per annum

6) Energy savings by using SMPS charger in night time:

Power savings in online UPS by using SMPS	50w x 12no s= 600w
Charger	
Energy savings 6 hours per day X 365 days	= 0.6 kw x 16 x 365= 3504 units per annum
By SMPS charger	
Cost savings @ 7.5 rs per unit x 3504 units	26280/- per annum
Cost of SMPS charger rs 5000/- X 12nos	60,000/- Rs
Pay back period	60000/26280 = 2.2 years
Co2 saved @1,2 kgs per unit	31526 kgs pr annum
Other advantages	Enhance in battery life
	Protection to UPS in night time
	Improved power factor

8.7 Computers and Accessories

With increase in IT utilization in education system and e learning resulted in more such connected load. The other impact include increase in UPS capacity, battery capacity and e waste generation. The accessories include computers, projector, printer with scanner and multi functional printer. The total number of accessories and its wattage details are as follows:

Accessories	Total Qty	Capacity in Watts
Computer	183	200-300
Projector	30	500-750
Printer with scanner	39	750-1000
Multi-functional printer(Copier)	5	1200-2000
Total	257	-

Remarks: Printers and scanners can be turned off when not in use for a long time. This can save the energy.

Recommendation:

- 1) It is recommended to replace the old monitors and use the new LCD/LED monitors which can save energy.
- 2) Re use of entire system or spares will reduce E waste to larger extent.
- 3) Scarp computers to be handed over to authorized e waste recycler only.

8.8 Pumps

Pumps capacity depends on flow and head. Pumps can work more efficiently if it works at a particular point called "Best Efficiency Point" (BEP). In general pump overall efficiency varies between 50 to 70%. BEE gives star rating for the pumps to indicate energy efficiency level. Use of low resistance pipes, reduction of bends will reduce load on pump. Water conservation and pump automations are other simpler way to conserve energy.

There are three pumps in the campus but 2 pumps are in regular use for kaveri water and 1 pump is used occasionally for bore well water.

CAPACITY	3 HP or 5hp
ТҮРЕ	SUBMERGED
MAKE/ MODEL	-
YEARS OF USE	
STAGE(SUB PUMP)	
REPAIRS/REWOUND	-
WATER FLOW FROM/TO	GLR to Old Building
SUCTION HEAD	0
DELIVERY HEIGHT	60 - 70 Feet
LENGHT OF PIPE	60 - 70 Feet
TYPE OF PIPE	PVC
DIA OF PIPE	4"
USAGE PER DAY	1 Hour 30 Minutes Per Day
CURRENT -R	6.35
CURRENT - Y	6.53
CURRENT -B	6.27
PF	0.8
VOLTAGE- R	239.3
VOLTAGE- Y	240
VOLTAGE- B	245

PUMP EVALUATION DATA & READINGS DATE & TIME – 01/02/2022 & 12:20PM LOCATION – Near Botany

VOLTAGE- RY	419
VOLTAGE- YB	421
VOLTAGE- BR	415
WATER TDS	151

Power in put = 3782 kw

PUMP EVALUATION DATA & READINGS FORMAT DATE & TIME – 01/02/2022 & 11:20AM

LOCATION – Near Canteen

CAPACITY	5 HP
ТҮРЕ	SUBMERGED
MAKE/ MODEL	-
YEARS OF USE	
STAGE(SUB PUMP)	
REPAIRS/REWOUND	-
WATER FLOW FROM/TO	GLR to New Building Tank
SUCTION HEAD	0
DELIVERY HEIGHT	50 - 60 Feet
LENGHT OF PIPE	50 – 60 Feet
TYPE OF PIPE	PVC
DIA OF PIPE	4"
USAGE PER DAY	1 Hour 30 Minutes Per Day
CURRENT -R	8.21
CURRENT - Y	8.66
CURRENT -B	8.37
PF	0.78
VOLTAGE- R	240.3
VOLTAGE- Y	243.5
VOLTAGE- B	244.1
VOLTAGE- RY	425
VOLTAGE- YB	427

VOLTAGE- BR	423
WATER TDS	151

Power in put =4328kw

Remarks:

- 1) Present pumps are working with the specified power limit. Current & power factors are within limit and balanced in all three phases.
- 2) But records related to capacity of pump, make, model, date of installation were not available to access exact efficiency level.

Recommendation::

- 1) Pumps can be automated with auto on-off or timer control or indicative buzzer can be fixed.
- 2) Always recommended to buy five star rated pump
- 3) Head & flow has to matched for optimum efficiency level

8.9 Air Conditioners

Introduction: in any building, air conditioners are used for comfort purpose along with dust free and controlled environment in computer server rooms or labs. Majority of air conditioners will be split air conditioners of direct expansion type. Large buildings with central air conditioning will have duct based central units. BEE has set standards for split air conditioner energy efficiency levels. Based on energy efficiency Star rating will be given. These standards will vary in accordance with technological advancement. Example is given below

Along with equipment efficiency, usage pattern, reduction of heat gain ,set temperature & maintenance will play important role in energy conservation. BEE has recommended to set temperature to above 24 deg C for comfort use.

Different types of refrigerants are used in air conditioners. Among them R11 and R22 have more global worming potential and are out dated now. R410 is currently used refrigerant. Replacing R11 and R22 by R410 is not technically feasible.

There are totally 8 Split acs & one central AC at auditorium. The details are given below:

Location		Botany Staffroom
Make		Volts
Star Rating		3 Star (EER - 3.51)
Capacity		1 TR
Туре	of	
Compressor		Non-Inverter
Refrigerant		R22
Input Power		1002 W
Cooling Capacity		3520 W
Year	of	
Manufacture		2018

Location		Statistics Lab
Make		LG
Star Rating		2 Star (EER - 3.0)
Capacity		1.5 TR
Туре	of	
Compressor		Non-Inverter
Refrigerant		R22
Input Power		1460 W
Cooling Capacity		4600 W
Year	of	
Manufacture		2014

Location	Maths Lab
Make	LG
Star Rating	2 Star (EER - 3.0)
Capacity	1.5 TR
Type of	
Compressor	Non-Inverter
Refrigerant	R22
Input Power	1460 W
Cooling Capacity	4600 W
Year of	
Manufacture	2014

Location	Maths Lab
Make	LG
	2 Star (EER -
Star Rating	3.0)
Capacity	1.5 TR
Type of Compressor	Non-Inverter
Refrigerant	R22
Input Power	1460 W
Cooling Capacity	4600 W
Year of Manufacture	2014

Location	Statistics Lab
Make	LG
Star Rating	2 Star (EER - 3.0)
Capacity	1.5 TR
Type of	
Compressor	Non-Inverter
Refrigerant	R22
Input Power	1460 W
Cooling Capacity	4600 W
Year of	
Manufacture	2014

Location	Statistics Lab
Make	LG
Star Rating	2 Star (EER - 3.0)
Capacity	1.5 TR
Type of	
Compressor	Non-Inverter
Refrigerant	R22
Input Power	1460 W
Cooling Capacity	4600 W
Year of	
Manufacture	2014

Location		Board Room
Make		LG
Star Rating		2 Star (EER - 3.0)
Capacity		1.5 TR
Туре	of	
Compressor		Non-Inverter
Refrigerant		R22
Input Power		1460 W
Cooling Capacity		4600 W
Year	of	
Manufacture		2014

Location		Board Room
Make		LG
Star Rating		2 Star (EER - 3.0)
Capacity		1.5 TR
Туре	of	
Compressor		Non-Inverter
Refrigerant		R22
Input Power		1460 W
Cooling Capacity		4600 W
Year	of	
Manufacture		2014

Remark:

- > All air conditioners are in working condition
- Usage is very much limited
- > Present Acs are 2 & 3 star rated
- Refrigerants used in air conditioners are R1 & R22
- > Recommendations:
- Presently used Acs are having EER of 3 to 3.51. Air Conditioners with 5 star ratings have EER of 5.0
- > ACs with inverter technology will save energy & there will not be any starting surge
- > Present ACs use more environmental friendly Refrigerant R410a , than present R11 or R22

We suggest to buy 5 star rated Air Conditioners with inverter technology and R410 a refrigerant in future

Recommended to use occupancy sensors , wherever applicable.

BEE recommends st temperature for comfort use as min 24 deg C.

Every degree increase in set temperature will save about 6% of energy

8.10 Refrigerator

There are 20 Refrigerators and 3 Freezers for lab usage and other purpose in the college. The energy consumption depends on doors of a refrigerator, such as single door and double door. Because single door fridge doesn't de-frost the ice but double door fridge automatically de-frosts the Ice. So, double door fridge consumes more energy. It also depends on the size of a refrigerator. Refrigerators details which are used in the campus are as follows:

-				
	Principal	Auto	&	
Location	Chamber			
Make	Godrej			
Star rating	5 star			
Model/Year	GDE 19 B1/20	10		
Units Per Year	262 Units			
Storage				, '
Volume	178 Ltrs.			
	1			
Location	Micro Biology	1		
Make	Samsung			
Star rating	3 Star			
Model/Year				
Units Per Year	265 Units			
Storage				, ,
Volume	320 Ltrs.			
Location	Micro Biology	2		
Make	Samsung			
Star rating	4 Star			
Model/Year	RT23/2009			
Units Per Year	433 Units			
Storage				, ,
Volume	208 Ltrs.			
	1			
Location	Micro Biology	2		
Make	Samsung			
Star rating	No star label			
Model/Year	RT45LSPN1/20	011		
Units Per Year	325 Units			
Storage				
Volume	359 Ltrs.			

		_
Location	Bio Chemistry Lab 2	
Make	Samsung	
Star rating	3 Star	
Model/Year	RT37K3993SL/HL/2016	
Units Per Year	265 Units	
Storage		
Volume	321 Ltrs.	

Location	Bio Tech Lab 1
Make	LG
Star rating	5 Star
Model/Year	GL-338VA5/2010
Units Per Year	402 Units
Storage	
Volume	290 Ltrs.

Location	Bio tech Lab 2
Make	LG
Star rating	4 Star
Model/Year	GL-325/2008
Units Per Year	490 Units
Storage	
Volume	274 Ltrs.

Location	Molecular Biology Lab 1
Make	Samsung
Star rating	2 Star
Model/Year	N/A
Units Per Year	390 Units
Storage	
Volume	400 Ltrs.

Location	Sericulture Practical Hall	Location	Molecular Biology Lab 2
Make	Any	Make	Samsung
Star rating	No star label	Star rating	4 Star
Model/Year		Model/Year	RT34/2008
Units Per Year	70 Units	Units Per Year	494 Units
Storage Volume	50 Ltrs.	Storage Vol.	319 Ltrs.
----------------	---------------------	----------------------	----------------------------
	7		
Location	Zoology	Location	Molecular Biology Lab 2
маке	Samsung	Маке	Samsung
Star rating	4 Star	Star rating	No star label
Model/Year	RR1914ASBSC/TL/2013	Model/Year	
Units Per Year	310 Units	Units Per Year	300 Units
Storage Volume	183 Ltrs.	Storage Vol.	300 Ltrs.
Location	Ashadevi Room	Location	Practical Hall 1
Make	Videocon	Make	Godrej
Star rating	4 Star	Star rating	No star label
Model/Year	VRE184/2011	Model/Year	
Units Per Year	114 Units	Units Per Year	100 Units
Storage Volume	166 Ltrs.	Storage Vol	100 Ltrs.
Location	DSE 1st Voor Lob	Location	Soricultura Boom 1
Location	BSE ISt Year Lab		
	Godrej	Make Stan nations	LG
Star rating	No star label	Star rating	5 Star
Wodel/Year		Model/Year	GL-195NP5/2010
Units Per Year	100 Units	Units Per Year	244 Units
Storage Volume	100 Ltrs.	Storage Vol.	175 Ltrs.
Location	Chemistry Lab 2	Location	Sericulture Practical Hall
Make	LG	Make	Samsung
Star rating	4 Star	Star rating	2 Star
Model/Year	GL-D201AMHL/2016	Model/Year	RT26H3000SC/TL/2014
Units Per Year	245 Units	Units Per Year	383 Units
Storage Volume	180 Ltrs.	Storage Vol	228 Ltrs.
		Location	Molecular Biology Lab 2
Location	Chemistry Lab 5	Make	LG
Make	Godrej	Star rating	4 Star
Star rating	3 Star	Model/Year	GL-244GP4/2008
Model/Year	GFE25AC/2009	Units /Year	450 Units
Units Per Year	533 Units	Storage Vol	203 Ltrs.
Storage Volume	199 Ltrs.		

Remarks: There are different types of star rating labels for different refrigerators. The following are the total number of refrigerators with different types of ratings:

Rating	Qty
2 Star	2
3 Star	3
4 Star	7
5 Star	3
No star	5

The total energy consumption by these refrigerators is 6175W.

Recommendation:

It is recommended to buy 5 star rated refrigerators in future.

Presently used old refrigerators (without any star label) can be replaced , only if it fails to function.

8.11 AUTOMATION

Automation describes a wide range of technologies that reduce human intervention in processes. Human intervention is reduced by predetermining decision criteria, sub process relationships, and related actions — and embodying those predeterminations in machines.

Automation, includes the use of various equipment and control systems such as machinery, processes and other applications with reduced human intervention.

Automation covers applications ranging from a household thermostat controlling , to a large industrial control system with tens of thousands of input measurements and output control signals. Automation has also found space in all the b sector. In control complexity, it can range from simple on-off control to multi-variable high-level algorithms.

Upcoming trends includes IOT (internet of things) AI (artificial intelligence) & ML (machine learning)

Advantages

1)Accuracy 2)Reduced human error

3) Energy savings 4) Enhanced life of equipments

Based on study we conducted at your institute, we recommend following automation systems.

1)Energy monitoring & recording (EMS) at two locations: One at new building panel board & another at old building panel board). This will record and store all power parameters. Institution doesn't has separate meter at present and paying energy charges to university. Using this data voltage , load and energy consumption can be recorded periodically.

2)Pump control (total automation or timer or buzzer indication); Presently water pump is witched on & off manually. Automatic control will reduce human interface and avoid dry and over flow condition. An hour meter can be fixed to records hours of pump usage. This hour meter reading will also help to evaluate energy consumption and water usage OR Timer control to switch off pumps can be adopted. This will reduce chances of forgetting switching off the pump. However automatic 'on-off' will give complete solution

3)Auto day & night switch for yard lighting or timer based control: Yard lights are switche on & off manually at present. There i every chance that these lights are switchd on early than needed or switched off late. To avoid such condition automatic day night switch can be installed. These switches has to be installed to street light circuit or to any high power lights directly.

4)Occupancy based exhaust fan control in rest rooms & labs : there are chances that exhaust fans run unnecessarily. Occupancy sensors will switch off fans after pre fixed time, when there is no occupancy.

5)IR based occupancy control for air conditioners: Air conditioners take heavy power. An .5 ton air conditioner will draw about 7 to 8 amps of current. An Infra red (IR) based occupancy sensor can be fixed to reduce unoccupied usage. But these can be used where air conditioners are used for human comfort, not for any process control or lab purpose.

8.12 LUX Level

Introduction: Lux is luminous flux in unit area. It is a measure of light. Improper design of lighting system or less opening to natural light will reduce the lux level. National Building code has given standard of lux level for different applications. Class rooms and office rooms needs minimum 200 lux for comfortable working. (One lux is one lumen of light distributed evenly in one sq meter.

In the old building of the campus, there is no sufficient day light as well as old tubes are used and LED lights are not used. So, the lux level is very low. Low lux level will result in fatigue and disorientation and eyes will get strained. Some rooms are having sufficient level of lux in the old building. Lux level should be 200 to 300.

We have done a sample survey in between October to November where there is no much sun light during those days.

Recommendation: We recommend to replace faulty lights in these rooms by new LED lights .

Room	LUX	Old building- floor
Class Room 1 (Botany dept.)	298	First Floor
Practical Hall 1 (Botany dept.)	153	First Floor
Sericulture Practical Hall (Botany dept.)	90	First Floor
Zoology Lab 1	147	First Floor
Geology Lab	58	First Floor
Mathematics Lab	132	First Floor
Board Room	88	First Floor
Physics Lab 3	50	Ground Floor back side
Physics Lab 4	103	Ground Floor back side
Chemistry Lab 1	54	Ground Floor back side
Chemistry Lab 2	60	Ground Floor back side
Chemistry Lab 3	200	Ground Floor back side
Chemistry Lab 5	114	Ground Floor back side

Old building random survey

New building details:

In the new building is having good day light as well as lights are working. Iux level is very good and sufficient on the work plane or benches.

Floor	Room	LUX Level
Ground floor	Molecular Biology Lab	125
	Molecular Biology Staff room	143
	Biotechnology Lab	164
First floor	Bio Chemistry Lab	169
	Micro Biology Lab	120
Second floor	Computer Lab	206
	Computer Lab Staff room	223

Floor	Room	LUX Level
	CB Building	
Ground floor	CB 5	213
	CB 12	219
First floor	BBA	230
	MBA	249

LUX WITHOUT LIGHTS (Natural day light)

RB Building	LUX Level
RB 1	174
RB 3	130

Images taken at various locations

8.13 Water TDS (Hardness)

Introduction: TDS represents total dissolved salts in water. Water will have lots of minerals which are useful for human body. There are calcium and sodium salts also in water which makes water "hard". Such hardness will cause lots of other problems. These salts will deposit in water pipe lines, electric heaters, and solar water heaters. Water hardness is measured by PPM (Parts Per Million). Any water with less than 150 ppm will not cause any problem and more than 250 PPM causes many problems.

Institution's main source of water is Corporation water (Kaveri). When we have measured TDS by PPM Meter, we found out the PPM is 125 to 150ppm So, water is less hard. College is using RO plant for purifying the water for drinking purpose. After purifying the water, TDS is 10ppm PPM. It can up to 75 PPM. The waste water which comes out after purifying by RO Plant is used for plants and trees.

8.14 Natural Day light and ventilation

In the old building there is less natural day light because of small windows. In the new building, there is a good natural day light because of wide windows. Ventilation is good in both the buildings.

8.15 Electrical Panel boards

Yuvraja college has two blocks , old building & new building. Both have separate electrical panel boards. After examining panel boards we found following discrepancies. These are related to safety ,control and monitoring and hence to be treated as priority matter.

- 1) We found live and dead rats in new building panel board. It is required to secure both panel board by entry of any creature, including lizard. Else it may lead to cable damage or even short circuit issue.
- 2) There is SLD (single line diagram) of electrical lay out. It required to trace circuit, in event of fault
- 3) There is no labelling on control switch gear. This is required to control , isolate or reset circuit easily in case of any issue on load side
- 4) Even though power factor of entire campus is maintained excellent at "near unity", panel board at new building is over compensated. This has resulted in leading power factor from 0.13 to 0.5. This is not recommended. Central power factor correction Capacitor bank can be redesigned this avoiding over compensation at any panel board.
- 5) Power factor at panel board of old building is measured between 0.7 to 0.8 lag, This is normal considering load type at present. This lag is compensated and over all power factor at metering is near unity.
- 6) Panel board has analog meters . But these are not working. Better to replace with digital meter with multifunction facility even to record energy consumption
- 7) Panel at old building doesn't have any meters to read parameters. It is recommended to fix CTs and multi function digital meters to read power & energy.
- 8) At present there is no facility to measure actual energy consumption of Yuvaraja college. Fixing of multi function meters as mentioned above will help to monitor all power parameters along with energy consumption. So that institution can pay on actua; I nergy consumption and can evaluate its performance.
- 9) EMS –Energy Monitoring system , is another advanced soft ware tool, which takes readings from above meters. This can be analysed and proper action can b taken. This will be learning opportunity for interested electronics & computer students.

9. Renewable energy

9.1 Introduction to Renewable energy:

Recent years India witnessed exponential growth in renewable energy. Among all renewable energy sources, such as wind, solar, bio mass, waste to energy, etc, solar energy is easily harvestable and scalable. Solar energy utilisation can be stared with very low power from 50w and scale up to megawatts.

Even with implementation of small roof top systems to large solar parks, India is still depending on fossil fuel based power plants. Fortunately ours is being tropical country, there is ample opportunity to utilise solar energy.

In this chapter we see present renewable energy utilisation and opportunity to implement more solar energy in the campus. We see campus is not utilising solar in any considerable manner. Hence we can discuss different opportunity to utilise solar power.

Ways to utilise solar PV (photo voltaic) power are as below:

1)Solar thermal : since institution does not require hot water , there is n requirement of solar water heater

2)Solar street light (solar DC power system); Institution has six solar street lights. Its present condition & recommendation is discussed in next chapter

3)Solar off grid system : presently there is no solar off grid system. Implementation option given in next chapter

4) solar on grid (grid tie) system: opportunity and limitations are discussed in next chapter.

Solar off grid and on grid (grid tie) system

Solar off grid system: Here energy produced from solar panels are stored in batteries. It will be converted to useful regular AC using inverters. Energy produced from solar has to used for own purpose. Excess generation (if any) will be wasted. Hence capacity utilisation is less, initial investment is high and running cost also more due to battery utilisation. Still this system is in practice, where load requirement is less and on grid system is not possible

Solar on grid system : Here solar power produced is connected to grid supply and load. This system does not require batteries. In case of excess power is generated by solar, it will be exported to grid. Similarly any short production will be compensated by grid supply. This is most efficient system.

9.2 Renewable energy usage at present and recommendations

(a)Solar street light system:

Institution has six solar streetlights. Unfortunately none of them are in working condition.

Usually solar panels will have life of 20 years. There more chance of putting them to use again. But lights , batteries and control circuit to be replaced.

Recommendation:

- 1) Check solar panel condition of all street light system (See chapter 9.3)
- 2) Recondition depending on solar panel working and efficiency condition
- 3) One of the solar street light is installed in the shade of trees , which needs to be re located , if brought to use.
- 4) Advanced integrated street lights with Li ion batteries can be used in future

Advantages:

- 1) Reconditioning of solar lights will cost less than 50% of new street lights
- 2) They also serve as emergency lights during power cut
- 3) The basic work can also be done as projects by students.

(b)Solar off grid system:

As explained in earlier chapter, this is stand alone system. Solar energy produced ahs to be utilised for self only and excess energy cannot be exported. Most suitable for capacities up to 5kwp. However can be increased depending on site condition. This system requires battery bank, due to this limitation overall project will increase, payback period will be more, in addition there is always a risk of battery cost and lead waste generation in every 3 to 5 years.

These types of systems are recommended, where on grid solar implementation is not possible and power utilisation is mostly in day time. This will reduce battery sizing, depth of discharge and enhancing battery life. These kinds of systems are also recommended where battery and Ups sytems are already in use and maintenance of such system is mandatory.

Institution is using UPS in various location for its computer and lab use. (list is provided in earlier chapter) This gives more opportunity to change on convert existing system to solar based UPS system.

Advantages:

- 1) Institution uses labs & computers in day time
- 2) There is no need to change in internal wiring
- 3) There will not be any additional lead waste generation or cost addition of batteries by solar
- 4) Present system and /or batteries can be utilised if feasible, else has to be shifted where there is need.
- 5) Institution is mandatorily maintaining UPS & batteries, only solar and related infrastructure cost will be additional expense.

6) This is best alternative option to use solar , as on grid solar implementation has limitations. Limitations:

- 1) Proposed Solar inverter (PCU) specification has to meet present load usage pattern
- 2) Solar to mains change over and vice versa not to interrupt process
- 3) Batteries will be subjected to more cycle of operation. Hence solar rated batteries has to be used
- 4) There has to be minimum 50 to 60 % of average loading, else excess power will be wasted
- 5) Panels & batteries need to be maintained periodically.

Pay back calculation for typical 5kwp off grid system

Present systems	
5kva on line ups with 10 Nos of batteries	Rs.1,50,000/-
Additional cost for going to solar based on line ups	
system	Rs.2,00,000/-
1)solar panels 5kwp	
2)structure	
3)solar PCU (instead of regular online UPS)	
4) solar grade batteries 10 nos instead of regular batteries	
Energy saved based on 75% utilisation of generated	3 units/kwp/day x 300days x 5kwp=
power and CUF of solar at 15%	4500 units per annum
Cost saved @ Rs 9/- per kwh	4500 x 9 = 40,500/- per annum
Considering future escalation	
Recovery of additional cost incurred for adding solar	=2,00,000 / 40500
	=4.9 years
Carbon saved @1.2 kgs per kwh	=4500 units X 1.2 kgs per kwh =5400
	kgs per annum

Note:

1) Above is neither commercial offer or estimate for calling tender. It is over view of project

2)Basic Cost per kw may decrease or increase depending on quantity

3) additional cost such as tax, excise duty, etc may change cost estimation

Recommendation:

Considering all above factors, we recommend to install either one or two solar off grid systems.

(c)Solar on grid system

Dra [.] on " quar	ft Proposal for Solar Roof Top SPVRT system net metering" basis for total campus (including Yuvaraja, Mahara ters)	ija college build	ding & VC
Α	Contract demand	250	KVA
В	Energy consumption (2019-2020)	3,00,000	UNITS
С	Provision for addition in coming years 25%	105000	UNITS
D	Total consumption expected	405000	UNITS
E	Capacity of solar plant for "Net Zero Energy" campus Considering 4kwh/day/kwp average	277	KWP
	As per regulation maximum solar capacity allowed is limited		
F	to contract demand (sanctioned load) at 0.9 PF	225	κw
•		225	
G	Energy generated by 225kwp solar plant	328500	UNITS
Н	Space required @ 6 sqmtr per kwp (6 x225)	1350	sgmtr
	Project cost at rs 40,000/- Rs per kwp		
Ι	(based Bench mark cost)	90,00,000	Rs
G	Subsidy not applicable for this category of consumer	0	
н	Pay back period considering Rs 9/- per unit and	3	years
	3,28,500 units of energy for self utilisation		
Ι	Life of project	25	years
J	Carbon savings @rs 1.2 kgs/unit (based on CEA verl4.O 2018)	394200	kgs
	Note:		
1	Fixed charges will continue		
2	Actual import & export of energy depends on seasonal variation and load		
	Since there is common metering for three locations		
	(Yuvaraja, Maharaja & VC quarters) installing solar		
3	Individually is not possible		
4	CHESCOM will consider it as single consumer		
F	Above costing is not commercial offer or estimate to call		
5	Costing may yany 10 to 20% depending on cabling condition		
6	taxes custom duty, etc		

SI. No.	Location	Condition
1	In front of new building (1)	Panel ok, Battery dead, charge controller faulty, LED light ok Battery box corroding
2	In front of new building(2)	Panel ok, Battery dead, charge controller faulty, LED light ok Battery box corroding
3	Inside park (1)	Panel ok , No battery & charge controller CFL light faulty Light is installed in shade of trees
4	Inside park (2)	Panel ok , Battery 42ah Faulty No charge controller No light (only CFL casing is present) Light is installed in shade of trees
5	Near old building(1)	Panel OK No battery & charge controller LED lights are working Battery box are corroding Lamp post is inclined
6	Near old Building (2)	Panel OK No battery & charge controller LED lights are working Battery box are corroding Lamp post is inclined
	Total 6nos (all are in fault condition)	

9.3 Present condition of solar street lights

Panel condition referrer's min 50% working efficiency

Recommendation:

- 1) To recondition two numbers. Two in front of new building can be considered on priority
- 2) Solar panels of other street lights are in better condition. This can be used to academic purpose to educate the students

10.1 Energy Performance Index

Introduction: Energy performance index (EPI) is total energy consumed in a building over a year divided by total Built up area in kWh/sq m/year and is considered as the simplest and most relevant indicator for qualifying a building as energy efficient or not.

ECBC compares EPI of any building with standard design. BEE has set different bench marks for commercial buildings with air conditioning and without air conditioning for different climatic zones.

Building	Floor area (approx)	No. of floors	Total	
New Building	540	3	1620	
Old Building	3781.78	2	7563.56	
Platinum Jubilee Hall	520.51	1	520.51	
		Total	9704.07	(All area in Sq.m.)

EPI = Total energy consumption in a year/total area in sq.m.

```
7000*12/9704
```

= 8.65 KWH/Year/Sq.m.

Observation:

BEE has not set any bench mark of educational institution. 8.65 EPI is excellent performance considering classrooms and lab usage based on our experience and study.

10.2 Per Capita Energy Consumption

We have calculated energy consumption by each person in the institution. Energy consumption varies depending on type of activity, facility, etc. Since campus has a common meter, based on our calculations, we have already assessed the energy consumption of Yuvaraja College as 7000 units per month. i.e. 84000 units annually.

Total persons using the facility include UG 2419, PG 262, and faculty 238, totally 2919. Per capita energy consumption - 84000/2919=28.77 units per person per annum.

There is no definite standard for above. But based on basic facilities and lab above value found justified.

However use of renewable energy & encon measures will reduce consumption level by 10-15%

11.Environment Audit

11.1 Introduction:

Environment Audit is a general term that reflects various kinds of evaluations intended to identify environmental compliance and management system, implementation gaps, along with related corrective actions. It is used to determine the types of waste and volume of waste, which can be used for a recycling project or to improve waste minimization plan by avoiding the things which creates more waste. It can create health consciousness and promote environmental awareness, values and ethics. All these can be achieved by creating awareness, best practices and use of technology.

Objectives of Environment Audit:Concern about environmental degradation and realization of values of environment are logical consequences of scholarly research, teaching and learning process. In its pursuit for improving environmental quality and to maintain a pristine environment for the future generations of students, Following objectives to achieve:

- 1) Establishing a baseline of existing environmental conditions with focus on natural and physical environment.
- 2) Understanding the current practices of sustainability with regard to the use of water and generation of wastes, etc.
- Awareness generation among students concerning real issues of environment and its sustainability.
- 4) Promotion of environmental awareness through participatory auditing process.
- 5) To create a report that document baseline data of good practices and provide strategies and action plans towards improving environmental quality for future.

In order to keep as much waste material out of the landfill as possible, it's important for each of us to do our part. One of the ways to put that plan into action is through the 3 Rs of waste management — Reduce, Reuse, Recycle.

Reduce means to cut back on the amount of trash we generate.

Reuse means to find new ways to use things that otherwise would have been thrown out.

Recycle means to turn something old and useless (like plastic milk jugs) into something new and useful (like picnic benches, playground equipment and recycling bins

11.2 Types of Waste Generated

Types and quantum of Waste generation in an organization depends on nature of activity, practice and number of people in the organization.

Following types of waste generation possibilities exists in institution.

Types of Wastes:

1) Dry Waste: Dry waste means dry materials that have been contaminated. It has categorized into

three types. They are: A) Paper Waste

B) Dry Leaf Waste

C) Plastic Waste

- 2) Wet Waste Food Waste
- 3) Biological Hazardous Waste Sanitary Pads
- 4) Chemical waste from labs
- 5) E waste Electrical & Electronic Equipments
- 6) Hazardous Waste Mercury waste by Fluorescent Tubes
- 7) Hazardous waste Lead waste by batteries
- 8) Sewage Waste Water.

11.3 Sewage Water

The main source of water for the college is from corporation.

Quantum of generation: The quantity of waste water is calculated from the consumption of water for the regular usage except for lawn and gardening. The details are given below:

Reading dated	Reading
30-09-2109	3372000
30-08-2018	821000
Consumption (annum) 18-19	2541000
Consumption average per month (ltrs)	212583
Present average based on MCC bill (Ltrs)	286000
Water Consumption	Qty in Ltrs.
Annual Consumption	2551000
Monthly Consumption	286000
Per Day Consumption	9533

As per the above table, sewage waste water is around 9533 ltrs per day.

Present way of disposal: Sewage water is drained to corporation UGD system.

Recommendations:

1) Having Own STP (Sewage Treatment Plant) : As per PCB norms institution needs to have its own STP. But we don't recommend it for only Yuvaraja college building. If it is for entire campus, it will be helpful.

- 2) Reduce water wastage in taps: Water flow can be controlled using pressure reducing valves. Automatic sensor based tap control or foot operated control can be used in selected locations. (Details given below)
- 3) Rain water harvesting (Details given below)
- 4) Bore well recharge pit (Details given below)
- 5) Awareness Posters & boards near taps : Creatively designed posters and easily visible boards will boards with message to "save water", "close tap properly", etc will create awarwness in students
- 6) Rain Water Harvesting.

Remarks: We have taken 3 bills (each bill in each year 2018, 2019 & 2021) as a sample for calculation of water usage. Sample bills have attached below :

11.3.1 Rain Water Harvesting:

(Area	(Alea-40005q.iii applox)			
SI. No.	Month	Rain fall (mm)	Harvestable (L)	
1	January	114.9	459600	
2	February	74.6	298400	
3	March	80.3	321200	
4	April	88.4	353600	
5	May	110.7	442800	
6	June	184.6	738400	
7	July	64.9	259600	
8	August	15.7	62800	
9	September	1.5	6000	
10	October	2.9	11600	
11	November	9.8	39200	
12	December	70.6	282900	
ΤΟΤΑ	L	818.9	3275500	_

Catchment: Area: 4000. Sq.m (Derived from Google image)

From the above table it is clear that there is ample scope for Rain water harvesting it is also evident that about 37.5lakh liters of water can be harvested every year and can be utilized for domestic and drinking purposes.

Present scenario: There is already a Good Rain Water harvesting system implemented at the new building. It has two collection tanks. One has one lakh litr capacity and another 50,000 ltr capacity, total collection capacity of 1.5 lakh litres but due to no maintenance it is not functional at the moment.

Recommendations:

1. We recommend the institution to add addition filters and undertake repair works so that the system regains its functionality.

2. Even after repair and other works it is very much required to maintain the rain water harvesting system on regular basis.

11.3.2 Bore well Recharge Pit

<u>Bore well recharging</u> technically focuses on the use of harvested surface water (obtained via rainfall or nearby water bodies) where runoff water begins to pass through a natural filter made up of large and small stones. Then, there is another layer of sand through which water passes and finally, it perforates in the bore well pipe via a fine mesh which is wrapped around the drilled casing pipe. The fine mesh ensures the removal of big and tiny impurities before the water enters the borewell.

Recommendation: As your institution having 1 borewell and depending on it occasionally, if you create bore well recharge pit, it will be helpful.

Recommendations:

3. We recommend the institution to add addition filters and undertake repair works so that the system regains its functionality.

4. Even after repair and other works it is very much required to maintain the rain water harvesting system on regular basis.

5.

11.3.3 Water Flow Control at Taps

1)Reducing pressure will reduce water flow from taps. This is simplest and cost effective way to control water wastage. It is recommended to fix such pressure reducing valves at taps of sink to reduce water usage.

2) use of automatic sensor system is another way used in hotels and other offices. Bit this is costly and maintenance is bit difficult in college. Hence it is not recommended at present.

3)Foot operated taps are another way to water wastage. Tap will be open only when it is pressed by foot operated mechanical control. This is another useful technology for covid like situations.

11.3.4 other water conservation measures

RO Water Reuse

Institution has a RO Plant (reverse osmosis) for water purification purpose. After purifying, waste water is being used for plants in the garden.

Water usage from Kukkarahalli Lake

Institution has taken water connection from Kukkarahalli lake for regular supply of water to the plants and trees in the campus by using pump.

Recommendation: There is no recommendation. Because this type of water connection is very helpful for the institution, they can save the money and avoid the corporation water usage.

11.4 Dry Waste – Paper Waste

Paper Waste is generated by the students and staffs while printing the exam papers and others.

Quantum of waste generation: Around 25-30 Kgs of paper waste is generated per day in the college. **Present way of disposal**: Paper waste is being collected separately in each department but dumped in the common dustbin with other wastes and handed over to the corporation.

Recommendation:

- 1) Keep the big and separate dustbin for overall paper waste in the campus and don't mix with other wastes. So that it will help to recycle it and use again.
- 2) If possible, paper waste can be decomposed and use it.

11.5 Dry Waste - Leaf Waste

Leaf wastes are generated by trees and plants due to season.

Quantum of waste generation: It is estimated that 1-2 cubic mtr. dry leaf wastes are generating inside the campus every day in the particular season.

Present way of disposal: Currently, dry leaf waste is dumping in the common dustbin and giving it to the corporation.

Recommendation:

- 1) We recommend to use vermi-compost to decompose the dry leaf waste. Because it produces manure and helpful for the plants' growth.
- 2) Use the separate dustbin for dry leaf waste.

11.6 Dry Waste - Plastic Waste

Plastic waste is a hazardous waste. As we have observed, plastic waste has been reduced in the campus. Students are bringing the lunch boxes and water bottles from home and carrying back to home but still we found some of the plastic bottles, food package covers and single use plastic covers in the campus.

Present way of disposal: All the plastic wastes are dumping in common dustbin with other wastes and without separating it, they are giving it to the corporation.

Recommendation:

- 1) Educate the students to avoid the plastic usage.
- 2) Keep the separate dustbin for plastic waste and give it to the corporation. So, that it will help them to recycle the plastic and there will be no need to segregate plastic wastes with other wastes.
- 3) Keep the awareness board and completely ban the plastic inside the campus.

11.7 Wet Waste – Food Waste

Wet waste is generated by leftover food by the students and staffs in the campus and canteen.

Quantum of wet waste: Food waste is generated around 5 Kgs per day.

Present way of disposal: Some students carry back the food waste to their home and some students will throw in common dustbin. Canteen food waste is fed to animals.

Recommendation:

- 1) Keep the separate dustbin for food waste.
- 2) Bio-gas can be produced and can use for LPG if the food waste increased in future.

11.8 Biological Hazardous Waste – Sanitary Pads

Sanitary pads are biological hazardous waste.

Quantum of generation: Around 12000 sanitary pads waste will be generated by the college female students and female staffs per month.

Present way of disposal: Institution has equipped with 6 incinerators. Female students and staffs will dispose the waste sanitary pads into it.

Recommendation: Present way of disposing is appreciable and we don't recommend anything.

11.9 Chemical Waste

Chemical waste is generated from chemistry practical labs.

Quantum of waste generation is less.

Present way of disposal: Chemical waste is buried in a separate place where there are no plants and trees and it has not connected to drainage.

Recommendation: As the present way of disposal is good, we don't recommend any other way of disposal.

11.10 E-Waste – Electrical and Electronic Equipments

E-waste (Electronic waste) describes discarded electrical or electronic devices. Used electronics which are destined for refurbishment, reuse, resale, salvage recycling through material recovery, or disposal are also considered E-waste. Informal processing of E-waste in developing countries can lead to adverse human health effects and environmental pollution.

Electronic scrap components, such as CPUs, contain potentially harmful materials. E-waste is created when an electronic product is discarded after the end of its useful life.

Quantum of waste generation: College has 183 Computers, 30 Projectors, 39 Printers (including scanner) and 5 Multi-functional printers (Copier). Total electronic items are 257 and it weighs approximately 3165 Kgs. It is estimated by considering 5 years of time span of all electronic items as it used for education, about 633 Kgs of E-waste is generated from the electronic items. Mainly computers generate E-waste more.

Present way of Disposal: College is giving the E-waste to regular scrap dealer for disposing.

Recommendation:

- 1) As per PCB Norms, we recommend to give the waste to authorized E-waste recycler and maintain the proofs.
- 2) Computer's parts which are working can be used for another systems and which of the parts can repair, after repairing can reuse.
- 3) For other details please refer Annexure chapter.

11.11 Hazardous Waste – Mercury Waste

Mercury waste will be generated by Tube lights and CFL.

Quantum of waste generation: Institution has 1242 Tube lights and 37 CFLs. Each tube light has 10 MG of mercury and each CFL has 5 MG of mercury. Total mercury content of all tube lights and CFLs will be around 12,605 MG. It is estimated by considering 4-5 years of time span of tube lights and CFLs also taking the average time span of 4 years, around 3151.25 MG of mercury waste is generated from the tube lights and CFLs per year.

Present way of disposal: Tube lights and CFLs are replaced as and when required. After replacing, waste is giving to the corporation.

Recommendation:

- 1) Dispose of all used tube & CFL as per PCB guidelines. (Enclosed in annexure). These have to be packed in a carton box and handed over separately to authorized e waste collectors. Box has to be labeled to contain fragile and hazardous waste.
- 2) Converting all Fluorescent lamps to LED is already recommended in this report in the energy audit part. LED lights will not have any mercury content. Hence disposing is easier.
- 3) Buy only LED tube & bulbs in future.

11.12 Hazardous Waste – Lead Waste

Introduction – Lead waste is generated by Batteries.

Quantum of waste generation: Institution has 121 UPS batteries. Total lead content of all batteries will be about 2662 Kgs. It is estimated by considering 3-5 years of time span of batteries and taking the average time span of 4 years, around 665.5 Kgs of lead waste is generated from the batteries per year.

Present way of waste disposal: As per PCB norms, there are 2 set of rules such as:

- 1) To give the batteries for the authorized recycler to recycle the lead waste.
- 2) To return the batteries for money to the seller in a buy back option.

The college is following the second rule and returning the dead batteries to the seller.

Recommendations:

- 1) Reduce battery AH capacity, after diesel generator is installed. Generator will give additional support. Hence battery can be optimized to support short back up of 30 mins. Presently used batteries are giving about three hours back up
- 2) Battery life can be extended by use of SMPS charger and switching off output of ups after working hours. This has been explained in energy conservation -UPS chapter
- 3) Battery maintenance log book has to be maintained near each UPS point to assure proper attending. This will enhance battery life.
- 4) Battery disposal guidelines given by PCB have to be followed.
- 5) Batteries have two types of capacity ratings. C10 & C20. C10 rated batteries are usually used for solar. This can be used for UPS also. C10 batteries will have more life than C20 rated batteries. It is recommended to buy C10 rated batteries, even if price is marginally higher.
- 6) Proofs and records should be maintained while purchasing the batteries and returning it for money. It will be helpful to return the batteries for money and also we can know the amount recovered from it.

11.13 Air Pollution

There is no generator in the college and no exhaust from it. As there is no vehicle parking and no entry for the public vehicle inside the campus, there is no air pollution in the college. So, students are getting fresh and hygienic air from the plants and trees. Also We don't recommend anything.

11.14 Noise Pollution

As explained in the earlier chapter, there is no generator, no vehicle parking inside the campus and no entry for the public vehicle also the institution has been educated the students, not to horn unnecessarily. So, there is no noise pollution in the college and we don't recommend anything.

11.15 Promoting Electrical Vehicles by Charging Points

At present two wheelers and four wheelers usage is less in the college. Institution can promote the electrical two wheeler vehicles by providing charging points. It consumes only 250-300 watts per vehicle. Electrical vehicle will fully get charged in 4 to 6 hours and consumes one unit of electricity. College can provide the facility to charge 3- 4 two vehicles at a time, students can charge their vehicle while attending the class. This facility can be free of cost as this will not create much financial burdon.

Power required for charging two wheeler can be taken from any nearest AC point. We have identified following location, which we found most suitable.

Safe electrical out let of 5 amps capacity in an enclosure with MCB can be provided for charging purpose. Students has to carry their own charger unit. Charger units will change from vehicle to vehicle depending on manufacturer. CCTV monitoring will provide safety required for their chargers. Charger can be housed in same box , where AC out let provided. Only DC output cable will b taken out of box. This will provide additional electrical safety & charger unit security. The facility may cost initial investment of about Rs.5000/-

12 Green Audit

12.1 Introduction:

Green Audit is a process of systematic identification, quantification, recording, reporting and analysis of components of environmental diversity of the institute. It aims to analyze environmental practices within and outside the institute which will have an impact on the eco-friendly atmosphere. It imparts a better understanding of Green impact on campus to staff and students.

Green Audit is a valuable means for a college to determine how and where they are using the most water and other resources. It helps to save environment by creating awareness regarding how much the plants and trees are important in mankind, birds and animals life. Thus, Green Audit is necessary for all the Educational Institution.

12.2 Green coverage Inventory

Legenc	1					
Total area	ilt up area	Road area	Garden Horticulture	ark	Iwn	J Ground

			Table				
Total area	Built up	Roa		Green Area			
of the campus in Sq. Mts	area in Sq. Mts	d area in Sq. Mts	Garden Horticulture in Sq. Mts	Park in Sq. Mts	Lawn in Sq. Mts	Play Ground in Sq. Mts	
41,009.628 61	12,628.61	1645	6774	4488	735	1517	
			Total Green area in Sq. Mts = 13,514				

Total area	Built up	Roa d area Acre s	Green Area				
of the campus in Acres	area in Acres		Garden Horticulture in Acres	Park in Acres	Lawn in Acres	Play Ground in Acres	
9.32	3.12	2.87	1.67	1.10	0.18	0.37	
			Total Green area in Acres = 3.33				

(Note: Boys hostel located at Saraswatipuram is not considered in above data)

Description	Area	%
Built up area in Sq. Mts	12628.61	30.79
Road area & others in Sq. Mts	14867.02	36.25
Garden Horticulture in Sq. Mts	6774.00	16.52
Park in Sq. Mts	4488.00	10.94
Lawn in Sq. Mts	735.00	1.79
Play Ground in Sq. Mts	1517.00	3.70
Total area	41009.63	100.00

Remark: It is appreciable that, even the campus is in the centre of busy area, about 30% of total campus area has green coverage.

12.3 Types of Flora

The area in this campus is immensely diverse with a variety of trees and plants performing a variety of functions. The trees and plants of the college have increased the quality of life, not only the college fraternity but also the people around the college in terms of contributing to our environment by providing oxygen, improving air quality, climate amelioration, conservation of water.

Sl. No.	Family	Plant name
1	Acanthaceae	Pseuderanthemum carruthersii (Seem.)
2	Acanthaceae	Hypoestes
3	Amaranthaceae	Gomphrena celosioides Mart.
4	Annonaceae	Artabotrys odoratissimus
5	Annonaceae	Annona squamosa
6	Apiaceae	Trigonella foenum
7	Apiaceae	Centella asiatica
8	Apocynaceae	Catharanthus roseus
9	Araceae	Anthurium plowmanii
11	Araceae	Diefffenbachia
12	Araceae	Aglaonema
13	Araceae	Colocasia
14	Arecaceae	Dypsis lutescens
15	Arecaceae	Pritchardia sp.
16	Arecaceae	Phoenix sylvestris
17	Arecaceae	Caryota urens
18	Asclepiadaceae	Asclepias curussavica
19	Asparagaceae	Dracaena
20	Asparagaceae	Chlorophytum comosum vittatum
21	Asparagaceae	Aspidistra elatior
22	Asteraceae	Synedrella
23	Asteraceae	Tagetes
24	Balsaminaceae	Impatiens balsamina
25	Brassicaceae	Brassica campestris
26	Cactaceae	Epiphyllum oxypetallum
27	Cannaceae	Canna indica
29	Crassulaceae	Kalanchoe tubiflora
30	Crassulaceae	Bryophyllum pinnatum (Lam.) Oken
31	Crassulaceae	Tradescantia pallida (Rose) D.R.Hunt
32	Euphorbiaceae	Acalypha wilkesiana Müll. Arg.
33	Euphorbiaceae	Euphorbia hirta
34	Fabaceae	Galphimia glauca
35	Fabaceae	Medicago sativa
36	Lamiaceae	Mentha spicata
37	Lamiaceae	Coleus aromaticus

38	Lamiaceae	Coleus scutellarioides

39	Lauraceae	Persea Americana
40	Lythraceae	Cuphea isopilia
41	Marantaceae	Maranta arundinaceae
42	Nyctaginaceae	Mirabilis jalapa
43	Oxalidaceae	Oxalis
44	Papillionoideae	Abrus precatorius L.
45	Pedaliaceae	Sesamum indicum
46	Piperaceae	<i>Peperomia</i> sp.
47	Plantaginaceae	Bacopa monnieri
48	Plantaginaceae	Russelia equisetiformis
49	Vitaceae	Vitis
50	Zingiberaceae	Amomum

1	Azolla	
2	Equisetum	
3	Microsorum punctatum	Pteripdophyte
4	Nephrolepis	
5	Selaginella	

S1.	No.

1	Abrus precatorius L.	Papillionoideae
2	Acalypha wilkesiana Müll.Arg.	Euphorbiaceae
3	Aglaonema	Araceae
4	Amomum	Zingiberaceae
5	Annona squamosa	Annonaceae
6	Anthurium plowmanii	Araceae
7	Artabotrys odoratissimus	Annonaceae
8	Asclepias curussavica	Asclepiadaceae
9	Aspidistra elatior	Asparagaceae
10	Bacopa monnieri	Plantaginaceae
11	Brassica	Brassicaceae
12	Bryophyllum pinnatum (Lam.) Oken	Crassulaceae
13	Canna indica	Cannaceae
14	Caryota urens	Areceae
15	Catharanthus roseus	Apocynaceae
16	Centella asiatica	Apiaceae
17	Chlorophytum comosum vittatum	Asparagaceae (variegated spider plant)
18	Coleus aromaticus	Lamiaceae
19	Coleus scutellarioides	Lamiaceae
20	Colocasia	Araceae
21	Cuphea hyssopifolia	Lythraceae
22	Diefffenbachia	Araceae
23	Dracaena	Asparagaceae
24	Dypsis lutescens	Arecaceae
25	Epiphyllum oxypetallum	Cactaceae
26	Euphorbia hirta	Euphorbiaceae
27	Galphimia glauca	Fabaceae
28	Gomphrena celosioides Mart.	Amaranthaceae
29	Hypoestes	Acanthaceae
30	Impatiens sp.	Balsaminaceae
31	Kalanchoe pumila	Crassulaceae
32	Kalanchoe tubiflora	Crassulaceae
33	Maranta arundinaceae	Marantaceae
34	Medicago sativa	Fabaceae
35	Mentha spicata	Lamiaceae
36	Mirabilis jalapa	Nyctaginaceae
37	Oxalis	Oxalidaceae
38	Peperomia sp.	Piperaceae
39	Persea americana	Lauraceae
40	Phoenix sylvestris	Arecaceae
41	Pistia stratiotes	Araceae
42	Pritchardia sp.	Arecaceae
43	Pseuderanthemum carruthersii (Seem.)	Acanthaceae (firecracker plant)

44	Russelia equisetiformis	Plantaginaceae
45	Sesamum indicum	Pedaliaceae
46	Spathophyllum	Araceae
47	Synedrella	Asteraceae
48	Tagetes	Asteraceae
49	Tradescantia pallida (Rose) D.R.Hunt	Crassulaceae
50	Trigonella foenum	Apiaceae
51	Vitis	Vitaceae

FAMILY	NO.	SCIENTIFIC NAME	Com mon nam e	Туре	Idengifying characters
Acanthaceae	1	Andrographis paniculata (Burm.f.) Nees	Nela bevu	Annual Herb	
	2	Asystasia gangetica (L.) T.Anderson	Mud deso ppu	Perennial Herb	yellow flower
	3	Asystasia gangetica (L.) T.Anderson	Chin ese Viole t	Perennial Herb	purple flowers
	4	Barleria cristata L.	Spha tika	Perennial Shrub	white & purple flowers
	5	Barleria prionitis L.	halad i gorat e/ma daran gi gida	Perennial Shrub	yellow flowers
	6	Barleria strigosa Willd.	Nili gora nte	Perennial Herb/subshrub	blue flowers
	7	Blepharis maderaspatensis (L.) B.Heyne ex Roth	kood ali sopp u	Perennial Creeping herb	4 leaves at each node
	8	Crossandra infundibuliformis (L.) Nees	Kana kamb ara	Evergreen Undershrub	
	9	Fittonia albivenis (Lindl. ex Veitch) Brummitt	Nerv e plant	Perennial Creeping herb	
	10	Graptophyllum pictum tricolor (L.) Griff.	Caric ature plant	Perennial Shrub	Centre white/yello w with bright boarder
	11	Graptophyllum pictum 'Alba Variegata (L.) Griff.	Caric ature plant	Shrub	Green and white patches
	12	Hemigraphis colorata W.Bull	Iode ne plant	herb	
	13	Justicia betonica L.	Kaad u kana kaam bra	Perennial Herb	Flamingo Flower
	14	Justicia brandegeeana Wassh. & L.B.Sm.	Shri mp plant	Perennial Shrub	yellow flower
	15	Justicia carnea LindlRadiant	Brazi lian plum	Shrub	

			e		
	16	Justicia carnea LindlSango	Flam ingo flow er	Shrub	
	17	Justicia gendarussa Burm.f.	Adut hoda gida	Perennial undershrub	green
	18	Justicia glauca Rottler	Kadd iyara kina gida	Undershrub	
	19	Justicia wynaadensis B.Heyne	Mod du sopp u	Shrub	
	20	Odontonema tubaeforme (Bertol.) Kuntze	Fires pike	Shrub	
	21	Pseuderanthemum carruthersii (Seem.)	Purpl e False Erant hemu m	Shrub	variegated
	22	Ruellia simplex C.Wright	Dese rt Petu nia	Herb	
	23	Sanchezia speciosa Leonard	Zebr a plant	Shrub	
	24	Thunbergia alata Bojer ex Sims	Blac k- Eyed Susa n Vine	Climber	
	25	Thunbergia erecta (Benth.) T.Anderson	Bush Cloc k Vine, King' s Mant le	Shrub	
	26	Thunbergia fragrans Roxb.	Sweet Clock-Vine		
	27	Thunbergia mysorensis (Wight) T.Anderson	Kamanabillu balli		
Agavaceae					
	1	Agave sisalana Perrine	Sisal Agave		
	2	Agave attenuataSalm-Dyck	Swan's	s Neck Agave	

	1		
Amaranthaceae			
	1	Eucharis amazonica Linden ex Planch.	Amazon Lily
	2	Gomphrena globosa L.	Globe Amaranth
Amaryllidaceae			
	1	Zephyranthes candida (Lindl) Herb.	Zephyr Lily
Anacardiaceae			
	1	Mangifera indica L.	Mavina mara
Annonaceae			
	1	Annona reticulata L.	
	2	Polyalthia longifolia (Sonn.) Thwaites	
Apiaceae			
	1	Centella asiatica (L.) Urban	ondelaga
	2	Hydrocotyl asiatica	
Apocynaceae			
	1	Allamanda sp. L.	Haladi hoo
	2	Alstonia macrophylla Wall.	Janthaala mara
	3	Calotropis gigantea (L.) Dryand.	Yekke gida
	4	Carissa carandas L.	Kavali hoovu
	5	Cascabela thevetia (L.) Liipold	Kaadukaasi Kanagalu
	6	Catharanthus roseus (L.) G.Don	Nityapushpa
	7	Nerium oleander L.	Oleander
	8	Plumeria pudica Jacq.	
	9	Plumeria rubra L.	Red Frangipani
	10	<i>Tabernaemontana divaricata</i> R. Br. Ex Roem. & Schult.	Nandi battalu
Araceae			
	1	Aglaonema commutatum Schott.	Chinese evergreen
	2	Aglaonema nebulosum N.E.Br.	
	3	Aglaonema nitidum	

	4	Alocasia macrorrhizos (L.) G. Don	Marasanige
	5	Anthurium crystallinum Linden & Andre	
	6	Anthurium plowmanii Croat	
	7	Caladium bicolor Vent	Heart of Jesus
	8	Colocasia esculenta (L.) Schott	Kesavu
	9	Dieffenbachia seguine (Jacq.) Schott	Dumb Cane
	10	<i>Epipremnum aureum</i> (Linden & André) G.S.Bunting	Money plant
	11	Pistia stratiotes L.	Water Lettuce
	12	Remusatia vivipara Schott	aadu Gadde
	13	Rhaphidophora pertusa (Roxb.) Schott	Dodda Thippali
Araliaceae			
	1	Polyscias sp. J.R.Forst. & G.Forst.	
	2	Schefflera arboricola (Hayata) Merr.	Ashtalakshmi
Arecaceae			
	1	Areca catechu L.	adake mara
	2	<i>Dypsis lutescence</i> (H.Wendl.) Beentje & J.Dransf.	Areca palm
	3	Caryota urens L.	Fish tail palm
	4	Cocos nucifera L.	Tengina mara
	5	Livistona chinensis (Jacq.) R.Br. Ex Mart.	Chinese Fan palm
	6	Rhapis excelsa (Thunb.) A.Henry	Lady palm
Aristolochiaceae			
	1	Aristolochia elegans Mast.	Elegant Dutchman's Pipe
Asclepiadaceae			
	1	Asclepias curassavica L.	Scarlet Milkweed
	2	Calotropis gigantea (L.) Dryand.	Yekke gida
	3	Cryptolepis buchanani Roemer & Schultes	
	4	<i>Gymnema sylvestre</i> R. Br.	Madhunashini
	5	Hoya pubicalyx R. Br.	Silver wax flowers
-----------------	---	---	------------------------------
Asteraceae			
	1	Ageratum conyzoides L.	Oorala gida
	2	Centratherum puncatatum Cass.	Porcupine flower
	3	Chrysanthemum indicum L.	Shevantige
	4	<i>Gerebera</i> sp.	
	5	Senecio cinerariae Spreng.	
	6	Tagetes minima L.	French Marigold
	7	Tithonia diversifolia (Hemsl.) A.Gray	Giant Mexican sunflower
Begoniaceae			
	1	Begonia grandis Dryand.	
Bignoniaceae			
	1	Crescentia cujete L.	
		Spathodea campanulata P.Beauv	African Tuliptree
	2	Tecoma capensis (Thunb.) Lindl.	Cape Honey suckle
	3	Tecoma stans (L.) Juss. ex Kunth	Koranechellar
		Tecomaria capensis Salmon	Yelloe bell
Bixaceae			
	1	Bixa orellana L.	Rangumaale
Bromiliaceae			
	1	Aechmea gamosepala Wittm.	Matchstick Plant
Burseraceae			
	1	Boswellia serrata Roxb.	Chilakadhupa
Cactaceae			
	1	Hylocereus undulatus (Haworth) Britton & Rose	Queen of nioght/Dragon fruit
	2	Maihueniopsis ovata (Pfeiff.) F.Ritter	Prickly Pear
	3	Opumtia microdasys (Lehm.) Pfeiff.	Ear Cactus
Caesalipinoidae			

	1	Bauhinia purpurea L.	Devakaanchana	
	2	Caesalpinia pulcherrima L. (Sw.)	Kenjige	
	3	Cassia alata L.	dhavala gida	
	4	Delonix regia (Boj. ex Hook.) Raf.	Kattikaayi mara	
	5	Peltophorum pterocarpum (DC.) K.Heyne	Copper pod	
	6	Pithecellobium dulce (Roxb.) Benth.	Seeme hunase	
	7	Tamarindus indica L.	Hunuse	
Caricaceae				
	1	Carica papaya L.	Рарауа	
Cannaceae				
	1	Canna indica L.	Kelaa hoo,	
Casuarinaceae				
	1	Casuarina equisetifolia L.	Surigi mara, Kyasurina	
Commelinaceae				
	1	Callisia repens Jacq.	Turtle vine	
	2	Tradescantia pallida (Rose) D.R.Hunt	Moses in the Cradle	
Convolvulaceae				
	1	Cuscuta reflexa Roxb.	Giant Dodder	
	2	Ipomea cairica (L.) Sweet	Bekkina Hejje Balli	
	3	Merremia tuberosa (L.) Rendle	Yellow Morning glory	
Crassulaceae				
	1	Bryophyllum pinnatum (Lam.) Oken	Life Plant	
	2	Kalanchoe pumila Baker	Flower dust Plant	
	3	Kalanchoe tubiflora Eckl. & Zeyh.	Chandelier Plant	
Cucurbitaceae				
	1	Coccinia grandis (L.) Voigt	Tondikay	
Cyperaceae				

	1	Cyperus alternifolius L.	Umbrella papyrus
	2	Cyperus haspan L.	Umbrella sedge
Dioscoraceae			
	1	Dioscorea communis (L.) Caddick & Wilkin	Bitter Yam
Euphorbiaceae			
	1	Acalypha hispida Burm.f.	Cat's tail
	2	Euphorbia antiquorum L.	Triangular spurge
	3	Euphorbia hirta L.	Asthmaplant
	4	Euphorbia milli Des Moul.	Crown of thorns
	5	Euphorbia pulcherrima Willd. ex Klotzsch	Poinsettia
	6	Euphorbia tirucalli L.	Kolgalli
	7	Excoecaria cochinchinensis Lour.	Chinese Croton
	8 Manihot carthaginensis sAllemubsp. glaziovii		Ceara rubber tree
	9	Manihot esculnta variegata Crantz	mara genasu
	10	Phyllanthus acidus (L.) Skeels	Nelli Kayi
	11	Phyllanthus emblica L.	Bettada nelli kayi
	12	Ricinus communis L.	Castor
Gesneriaceae			
	1	<i>Chrysothemis pulchella</i> (Donn ex Sims) Decne.	Squarestem
Haloragaceae			
	1	Myriophyllum aquaticum (Vell.) Verdc.	Parrot's Feather
Hydrocharitaceae			
	1	Hydrilla verticillata (Lf) Royle	Water thyme
	2	Najas indica (Willd.) Cham.	Water nymph
	3	Vallisneria spiralis L.	kudarebaladagida
Iridaceae			
	1	Iris domestica (L.) Goldblatt & Mabb.	Leopard flower
	2	Neomaria longifolia	Yellow walking Iris

Lamiaceae			
	1	Clerodendrum paniculatum L.	Pedago flower
	2	Clerodendrum thomsoniae Balf.f.	
	3	Leucas aspera (Willd.) Link	Tumbe gida
	4	Mentha spicata L.	Pudina
	5	Ocimum tenuiflorum L.	Tulsi
	6	Plectranthus amboinicus Lour.	Dodda pathre
Lentibulariaceae			
	1	Utricularia aurea Ridl.	
Liliaceae			
	1	Aloe vera (L.) Burm.f.	Lolesara
	2	Asparagus racemosus Willd.	halavu makkala taayi beru
	3	Cordyline fruticosa (L.) A. Chev.	Good Luck Plant
	4	Gloriosa superba L.	Glory Lily
	5	Dracaena reflexa Lam.	Dragon Tree
	6	Dracaena surculosa Lindl.	Golddust Dracaena
	7	Ruscus aculeatus L.	Butcher's broom
	8	Sansevieria cylindrica Bojer ex Hook.	Cylindrical snake plant
	9	Sansevieria trifasciata (Prain) Mabb.	Goddumanji
Lythraceae			
	1	Lawsonia inermis L.	Goranti
	2	Punica granatum L.	Daadimba
Magnoliaceae			
	1	Michelia champaca L.	Sampige
Malpighiaceae			
	1	Galphimia gracilis Bratl.	Gold shower
Malvaceae			

	1	Hibiscus rosasinensis L.	Dasavala
	2	Theobroma cacao L.	Cocoa Tree
Meliaceae			
	1	Azadiracta indica A.Juss.	Neem Tree
	2	Melia dubia Cav.	Hebbevu
	3	Swietenia mahagoni (L.) Jacq.	Big leaf mahagony
Menispermaceae			
	1	Tinospora cordifolia	Amritaballi
Mimosoideae			
	1	Albizia amara (Roxb.) Boiv.	Chujjulu
	2	Calliandra haematocephala Hassk.	Red powder puff
Moraceae			
	1	Artocarpus heterophyllus	Halasina mara
	2	Morus alba	Hippu nerale
Musaceae			
		Heliconia psittacorum	Parakeet Flower
	1	Heliconia rostrata	Hanging heliconia
Myrtaceae			
	1	Eucalyptus L'Hér.	
	2	Pimenta dioica	Allspice
	3	Syzygium jambos L. (Alston)	Rose Apple
Nyctaginaceae			
	1	Mirabilis jalapa	Madhyaahna mallige
Nymphaeaceae			
	1	Nymphaea alba L.	White water lily
	2	Nymphaea nouvhali Burm.f.	Red and Blue water lily
Oleaceae			

	1	Jasminum multiflorum	dodda kaadu mallige
	2	Jasminum sambac (L.) Aiton	Arabian Jasmine
	3	Nyctanthes arbor-tristis L.	Tree of Sorrow
Onagraceae			
	1	Jussiaea repens	neeru haavu,
Orchidaceae			
	1	Cymbidium bicolor Lindl.	Two coloured cymbidium
	2	Dendrobium nobile	
	3	Epidendrum radicans Pav.ex Lindl.	Red Crucifix
	4	Pholidota imbricata Hook.	Necklace Orchid
	5	Spathoglottis plicata Blume.	Phillipine Ground Orchid
	6	Vanda Gaud. ex Pfitzer	Vanda
	7	Vanilla planifoli Jacks. ex Andrews	Vanilla Creeper
Papilionoideae			
	1	Abrus precatorius L.	Gulaganji
	2	Crotalaria sp.	Senabu
	3	Erythrina sp.	
Pandanaceae			
	1	Pandanus sp	Taale hu
Phytolocaceae			
	1	Rivinia humilis L.	Coralberry
Plantaginaceae			
	1	Russelia equisetiformis Schlecht. & Cham.	Firecracker plant
Poaceae			
	1	Bambusa vulgaris Schrad. ex J.C.Wendl	Bamboo
	2	Chrysopogon Trin.	Laavancha
	3	Cymbopogon citratus (DC.) Stapf	Lemon Grass
Pontederiaceae			

	1	Eichhornea crassipes Mart.	Water Hyacinth
Proteaceae			
	1	Grevillea robusta A.Cunn, ex R.Br.	Silver oak Tree
Ranunculaceae			
	1	Clematis gouriana Roxb. Ex DC.	Nelakuma
Rosaceae			
	1	Rosa chinensis Jacq.	Bengal rose
Rubiaceae			
	1	<i>Coffee arabica</i> L.	Coffee
	2	Ixora coccinea L.	Rukmini
	3	Pentas lanceolata (Forssk.) Deflers	Pentas
Rutaceae			
	1	Citrus reticulata Blanco.	Mandarin Orange
	2	Citrus limon (L.) Osbeck	Lemon
	3	Ruta graveolens L.	Naagadaali
Santalaceae			
	1	Santalum album L.	Srigandha
Sapotaceae			
	1	Manilkara zapota (L.)P.Royen	Sapota
Simaroubaceae			
	1	Simarouba glauca DC.	Lakshmi Taru
Solanaceae			
	1	Solanum diphyllum L.	Twoleaf Nightshade
	2	Withnia somnifera (L.) Dunal	Ashwagandha
Sterculiaceae			
	1	Guazuma tomentosa	Rudrakshi
Strelitziaceae			

	1	Strelitzia nicolai Regel & K. Koch	White Bird of Paradise	
	2	Sterlitzia reginae Banks	Bird of Paradise	
Verbenaceae	Verbenaceae			
	1	Duranta erecta L.	Hucchelasi	
	2	Lantana camara L.	Lantavaani	
	3	Vitex negundo L.	Nochi	
Vitaceae				
	1	Vitis quadrangularis (L.) Wall. Ex Wight	vajravalli	
Zingiberaceae				
		Alpinia zerumbet (Pers.) B.L.Burtt &R.M.	Light galangal	
	1	Cheilocostus speciosus (J.Konig) C.Specht	Pushkaramula	
	2	<i>Chamaecostus cuspidatus</i> (Nees & Mart.) C. Specht & D.W.Stev.	Spiral Flag	
	3	Costus sp. L.		
	4	Curcuma longa L.	Turmeric	
	5	Etlingera elatior (Jack) R.M.Sm.	Torch Ginger	
	6	Zingiber zerumbet	Bitter ginger	

12.4 Bio-diversity of Aves in the Campus of Yuvaraja's college, Mysuru.

The word Bio-diversity is pre-eminent one which refers to the variety of life and its forms. Biodiversity is the natural array of the species and their relationship between them. This involves the variability of the life in given area and in space of time. The most important aspects of the biodiversity is it is unevenly distributed on our planet. In other words, different ecosystem harbors different flora and fauna communities. This can be measured on many levels ranging from the ecosystem to genetic level. It is figured as richness in variety and variability of all life forms in a given region. Quantifying the differences among biological communities as a major step towards understanding how and why biodiversity is distributed in this way. The Indian subcontinent comprises rich diversity in forest, wetlands, marine and desert ecosystem for this purpose it is well known as one of 12th mega diverse countries in the world. Here in this article we have attempted to address the diversity of avifauna in the Yuvaraja's campus, University of Mysore, Mysore.

The Yuvaraja's college constituent Autonomous instituteof University of Mysore is one of the premier organizationestablished in the year 1927, by Sri Krishnaraja Wodeyar prominent Maharajaof Mysuru by laying the foundation stone for the college in the presence of the Pandit Motilal Nehru (Father of first Prime minister of India), Sir Mirza Ismail (Dewan of Mysore) and Rajatantra Pravina Sir Bajendranth Seal (Vice-Chancellor) of University of Mysore. By the time of Silver Jubilee in the year 1954 it was retitled as Yuvaraja's college by the Maharaja Sri Jayachamraja Wodeyar. As a leading academic centre for its educational excellence the collegehas been recognized by UGC under 2(f) and 12(B) of UGC Act and Government of Karnataka. The institution was conferred the status of College with Potential for Excellence in 2010. Apart from this excellent quality of higher education the university grants commission conferred autonomous status to the college in the year 2005 and it was extended up to 2020. Quality enhancement, distinction and sustenance being the hallmark of this institution is further proved during the third cycle of re-accreditation by NAAC. The College constantly aspires to scale great heights in its quest for excellence in imparting human, intellectual, spiritual and moral knowledge for the present generation. In the year 2028 Yuvaraja's College steps into its 100th year of its existence and service to the nation.

Today, this institute is sheltered in the green belt which is extended to the centre of city .This green piece of land harbors many old flora planted many years ago which wrap up good number of fauna justifying the richness and diversity of living forms in around this campus. Here author have tried to calibrate the marvelous Avifauna in around the campus when came across during routine work.

Ecologically life is supported by diversity of life forms in one way or in other way which provides raw material for the functioning the present ecosystems. For instance birds are momentous in plant reproduction as seed dispersers and act as roller in pollination. Along with this it helps in maintain sustainable population levels of their prey and predator species and, after the death, it provides food for scavengers and decomposers. The study of birds (ornithology) has been contributed remarkably to the advancement in the field of community ecology. The avifauna is best indicator of ecosystem stability. Like other organisms birds also plays key role in keeping the ecosystem health. In nature the birds are of significance as pollinators and seed dispersal. The study of the biological diversity of avian in the particular area has now gained a wide global attention.

Role of conservation of birds has been least considered during modification of vegetative habitats and also urbanization of particular habitat. The present study was conducted to know the status of the birds in campus of the Yuvaraja's College University of Mysore. The purpose of survey of Avian was not only to assess the number of the species found in and around the campus but also intended to assess the relationship between habitat and the composition and distribution of avifauna in college campus. A survey was conducted by the direct observation of the birds from 6 to 7.30 am in the early morning and in the evening around 5.00 to 6.30pm from the August to December using the binocular in the college campus. According to the survey conducted in the campus comprises around 30 species of Avian fauna which belongs to 20 familyand 9 orders. given in the Table 1. The order Passeriformes are the commonly spotted in around the campus comprising 13 species. The order Coraciiformes comprises single species with rarely found here and there in the campus.

Sl	Common	Zoological Name	Family	Order	Food	Sta tus
	Name				Hadit	
1	Ashy Prinia	Priniasocialis	Cisticolidae	Passeriformes	Insectivorous	R
2	Asian brown fly catcher	Muscicopadasuerica	Muscicapidae	Passeriformes	Insectivorous	М
3	Bee eater	MeropsPhillppnus	Meropidae	Coraciiformes	Insectivorous	R
4	Black Kite	Milvus migrans	Accipitridae	Accipitriformes	Scavengers	R
5	Blue Rock Pigeon	Columba livia	Columbidae	Columbiformes	Seed Eater	R
6	Brahminy Kite	Haliasturindus	Accipitridae	Accipitriformes	Carnivorous	R
7	Bulbul	Pycnonotus barbatus	Pycnonotidae	Passeriformes	Frugivorous	R
8	Cattle Egret	Bubulcuscoramandus	Ardeidae	Pelecaniformes	Insectivorous	R
9	Coppersmith Barbet	Psilopogonhaemaceph alus	Megalaimdae	Piciformes	Frugivorous	R
10	Drongo	Dicrurusmacrocercus	Dicruruidae	Passerine	Insectivorous	R
11	Golden Oriole	Orioluskundoo	Orididae	Passeriformes	Frugivorous	R
12	Great Tit	Parus major	Paridae	Passeriformes	Insectivorous	R
13	Ноорое	Upupa epops	Upuidae	Bucerotiformes	Insectivorous	R
14	Hornbill	Anthracoceroscoron atus	Bucerotidae	Bucertiformes	Frugivorous	R
		Corvus splendens	Psittaculidae	Passeriformes	Scavenger	

Table 1. Shows the presence of the Avian fauna in the campus ofYuvaraja's college

15	House Crow					R
16	Indian Pond Heron	Ardeolagrayii	Ardeidae	Pelecaniformes	Water bird Insects, Fish, Amphibians, etc;	R
17	Jungle Crow	Corvus culminatus	Psittaculidae	Passeriformes	Scavenger	R
18	Magpie Robin	Copsychussaularis	Muscicapidae	Passeriformes	Insectivorous	R
19	Myna	Acridotheres tristis	Sturnidae	Passeriformes	Insectivorous	R
20	Red Naped Ibis	Pseudibispapillosa	Threskiornithidae	Pelecaniformes	Insectivorous	R
21	Rose ringed Parakeet	Psittaculakrameri	Psittaculidae	Psittaciformes	Frugivorous	R
22	Shikra	Accipter badius	Accipitridae	Accipitriformes	Carnivorous	R
23	Small Minivet	Precrocotuscinnamom eus	Campephagidae	Passeriformes	Frugivorous	R
24	Spotted Dove	Spilopellachenensis	Columbidae	Columbiformes	Seed Eater	R
25	Spotted Owlet	Athene brama	Strigidae	Strigiformes	Carnivorous	R
26	Sunbirds	Cinnyris asiaticus	Nectarinidae	Passeriformes	Nectarivorous	R
27	Tickel's blue Flycatcher	Cyomistickelliae	Muscicapidae	Passeriformes	Insectivorous	R
28	Warbler	Phylloscopussibilitrix	Phylloscopidae	Passeriformes	Insectivorous	Μ
29	White breasted Kingfisher	Psilpogonvindis	Megalaimdae	Piciformes	Insects, worms, Fishes,Amphi bians, Reptiles etc	R
30	White Cheeked Barbet	Psilopogonviridis	Megalaimdae	Piciformes	Frugivorous	R

R- Resident of YCM: M- Migrant in YCM

Table 2 Shows the list of the lost plant and Avifauna in the Yuvaraja's college campus

1	Tickel's Flycatcher	blue	Cyomistickelliae	Passeriformes	Acacia species	Insectivorous	R
2	Warbler		Phylloscopussibilitrix	Passeriformes	Polyalthia longifolia	Insectivorous	М
3	House Crow		Corvus splendens	Passeriformes	Azadirachta indica Cocus nucifera Dilonox regia Peltaphorum	Scavenger	R

12.5 Water Bodies

There are no natural or artificial water bodies such as small ponds and water fountains inside or outside the institute.

Recommendation:

It is recommended to have an artificial mini pond or fountain in the campus. This will help to have good landscape along with building eco system also looks good and beautiful for this green campus.

---00000----

13. Awareness activities

Awareness plays major role in protecting energy & environment. Educating the students in need & approach will act as accelerator in deploying recent trends. This will also help them in their career.

Institution has kept awareness boars in many places. Adding some more posters and boards are in process.

Institution has done different programs in both inside campus and outside campus. Details of such programs are given below.

Date/Year	Activities	No. of participants
2018	Art Modelling Form Waste Material	15
2018	Art Modelling Form Waste Material	15
16/02/201		
9	Workshop on Food Safety Auditing	40
2018-2019	Swacch Bharath	8
2018-2019	Swacch Andolana	10
2018-2019	Swacch Bharath	8
18/09/201		
8	Nutrition Awareness Talk	6
30/12/201		
8	Seed Sowing Fest	50
2018-2019	Food Adulteration Awareness Program	40
25/09/201		
8	Swacch Bharath	6
2018-2019	Seed Sowing Fest	50
22/04/201		
9	Earth Day Celebration	100
25/09/201		
8	Swacch Bharath Abhiyan	1000
14/09/201		
9	Shramadan	4
24/09/201		
9	Shramadan	5

From May 2020 to	August 2021				
	Organising unit/agency/ collaborating		Number of teachers participate	Number of students	
Title of the activities	agency	Date	d	participated	
PLANTING FRUIT PLANTS' Programme					
September'2019	College, Mysuru	25-09-2020	3		5
PLANTING FRUIT PLANTS'	NSS Unit Yuvaraja's College, Mysuru	29-09-2020	25		15

Programme held on 27 TH September'2019				
Essay Writing compitition	NSS Unit Yuvaraja's College, Mysuru	03-10-2020	2	20

Institution has also motivated and promoted students to involve in the competitions and activities done by other organisations and adopt in their home also.

Such as:

- Planting Samplings.
- Plastic Eradication.
- > Cleaning the surroundings.
- > Waste Segregation using colour coded and marked dustbins.
- > Drawings and posters.
- > Attending Talks & webinar related to environment conservation.

ANNEXURES